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ABSTRACT 

Photoemission from t h e  s i l v e r  ha l ides  has been s tudied between 

room and l i q u i d  ni t rogen temperatures i n  order  t o  inves t iga t e  the  e lec-  

t r o n  energy s t a t e s  of these  s o l i d s .  Cer ta in  s t r u c t u r e  i n  t h e  energy 

d i s t r i b u t i o n  curves (EDCS) of e l ec t rons  photoemitted from these  com- 

pounds was discovered t o  sharpen by over an order of magnitude more 

than  t h e  change i n  thermal energy. The techniques a re  described which 

were developed t o  measure f o r  t h e  f irst  time t h e  dependence of W photo- 

emission on temperatures ranging continuously from 2 3  t o  ~O'K. From a 

d e t a i l e d  d iscuss ion  of t h e  poss ib le  e f f e c t s  of t e q e r a t u r e  v a r i a t i o n  on 

photoemission from so l id s ,  it is suggested t h a t  t he  dramatic EDC tempera- 

t u r e  dependence is  due t o  a very s t rong  i n t e r a c t i o n  of t h e  e l ec t rons  with 

l a t t i c e .  A model is proposed t o  descr ibe t h i s  wherein t h e  dynamic var ia -  

t i o n s  of t h e  e l e c t r o n i c  s t a t e s  a re  caused by a f luc tua t ing  valence, 

halogen p - s i l v e r  d mixing due to t he  thermal v ibra t ions  of' t he  l a t t i c e .  

kipplying t h i s  dynamic wavefunction hybr id iza t ion  model i n  a very general  

way, t he  s i l v e r  s t a t e s  with almost pure 4d symmetry could be loca ted  

by ex.periment with reasonable c e r t a i n t y  f o r  t h e  f i r s t  time; these  loca-  

t i o n s  were 3.7, 3.3, and 4.4. eV below t h e  highest  f i l l e d  s t a t e s  i n  

AgCl, and AgI respec t ive ly .  By using a very simple ap.proximation of 

k = 0 o p t i c a l p h o n o n s  and r e s t r i c t i n g  the  ex ten t  of t he  in t e rac t ion  t o  

AgBr, 

about one neares t  neighbor dis tance,  t h e  proposed model was appl ied to 

the  AgCl energy bands and pressure dependent o p t i c a l  absorption data .  

These computations demonstrate i t s  p l a u s i b i l i t y  by p red ic t ing  magni- 

tudes f o r  dynamic broadenings of peaks i n  t h e  dens i ty  of  s t a t e s  and 

t h e i r  temperature dependences which a re  qu i t e  comparable to t he  corre-  

sponding EDC values .  Many o the r  complex f ea tu res  of t he  d a t a  are  examined 

i n  d e t a i l  and f i rs t  order  i n t e r p r e t a t i o n s  a re  presented.  The information 

about t h e  o p t i c a l  e x c i t a t i o n  process and e l ec t ron ic  s t a t e s  determined 

from these  s tud ie s  i s  summarized and compared to e x i s t i n g  est imates  f o r  

t h e  band s t r u c t u r e s  of these  s o l i d s .  
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I e INTRODUCTION 

The proximity i n  energy of t h e  Ag(4d) e l e c t r o n i c  s t a t e s  t o  t h e  

halogen p s t a t e s  makes t h e  valence s t r u c t u r e  of t he  s i l v e r  ha l ides  

very complex. Because of t h i s ,  it is  very d i f f i c u l t  t o  determine theo- 

r e t i c a l l y  or experimentally even such bas i c  c h a r a c t e r i s t i c s  as t h e  atomic 

o r i g i n  of t h e  h ighes t  f i l l e d  valence s t a t e s .  

was undertaken t o  experimentally determine f ea tu res  of t h e  e l e c t r o n i c  

s t r u c t u r e  of t h e  s i l v e r  ha l ides .  The l o c a t i o n  and r o l e  of t h e  s t a t e s  

der ived from t h e  atomic Ag(4d) 

ture was of p a r t i c u l a r  i n t e r e s t .  

The present  i nves t iga t ion  

o r b i t a l s  i n  t h e  o v e r a l l  valence s t ruc -  

Perhaps t h e  most powerful technique ava i lab le  t o  s tudy the  e l ec t ron  

s t a t e s  over a broad energy range is  t h e  measurement of t h e  energy dis- 

t r i b u t i o n  curves (EDCS) of e l ec t rons  photoexcited by u l t r a v i o l e t  (W) 

l i g h t  and emit ted from t h e  s o l i d  i n t o  vacuum. 

t r a n s i t i o n  energy of a photoexcited electron,  as i n  the  usua l  o p t i c a l  

experiment, but a lso t h e  f i n a l  s t a t e  energy of t h e  e lec t ron .  

pas t ,  t h e  primary method f o r  using t h i s  data t o  determine f ea tu res  of 

t h e  e l e c t r o n i c  s t r u c t u r e  was f i r s t  t o  determine the nature of the  o p t i c a l  

e x c i t a t i o n  process  ( i a e e ,  whether c r y s t a l  momentum, k , was conserved 

i n  t h e  t r a n s i t i o n s ) .  

e i t h e r  (1) be coxrfpared wi th  d i s t r i b u t i o n s  pred ic ted  from t r a n s i t i o n s  i n  

a ca l cu la t ed  energy band s t ruc tu re ,  o r  (2) i f  k i s  not conserved, be 

used t o  p r e d i c t  a dens i ty  of s t a t e s  which could then  be compared wi th  

t h e o r e t i c a l  ca l cu la t ions .  These procedures have proved very f r u i t f u l  

f o r  (1) s o l i d s  ‘whose bands can be ca l cu la t ed  w i t h  a reasonable degree 

of accuracy (e.g., group I V  or I11 - V semiconductors) or, i f  such 

d e t a i l e d  information is lacking, f o r  (2)  mater ia l s  whose e l e c t r o n i c  

s t r u c t u r e  is s u f f i c i e n t l y  simple t ha t  one can est imate  i ts  nature w i t h  

reasonable accuracy (e.g., t h e  alkali  ha l ides )  o r  even if nothing is 

known theo re t i ca l ly ,  f o r  ( 3 )  s o l i d s  i n  which non-conservation of k i s  

a good approximation. 

One measures not only t h e  

I n  t h e  

Depending on these  findings,  t he  EDCs would then 

Unfortunately t h e  s i l v e r  ha l ides  do not f i t  i n to  
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any of t hese  ca tegor ies .  The i r  EDC s t r u c t u r e  behaves with h V  varia- 
t i o n  as  i f  k were conserved i n  a t  least some of t h e  t r a n s i t i o n s ,  I n  

addi t ion,  i t s  e l e c t r o n i c  s t r u c t u r e  i s  so  complicated and poorly under- - 

stood t h a t  it has been t h e  sub jec t  of  specula t ion  f o r  near ly  two decadeso 

Thus, s tandard photoemission inves t iga t ion  techniques could not be un- 

ambiguously used t o  determine d e t a i l s  of  t h e  s i l v e r  ha l ide  e l e c t r o n i c  

s t a t e s  e 

I n  an a t t e q p t  t o  sharpen t h e  EDC s t ruc ture ,  which a t  high hV was 

qu i t e  broad, and thereby perhaps ga in  more detailed information,- t h e  

samples were cooled t o  l i q u i d  ni t rogen (EX2) temperatures using e x i s t -  

ing equiFment of Krolikowskil and DiStef ano' with modified cool ing tech-  

niques. 

( i . e e 3  many t e n t h s  of an eV) compared t o  changes observed for other  

so l ids ,  while o the r  s t r u c t u r e  showed only small  changes, i f  any ( i e e e j  

changes on the  order  of t he  change i n  

i n t e r e s t i n g  f o r  i t s  own sake but  a l s o  could be u t i l i z e d  as a valuable 

new experimental  t o o l  i n  t h e  study o f  t he  e l e c t r o n i c  s t a t e s .  

ferences i n  temperature dependence of t he  var ious EDC peaks were used 

t o  i d e n t i f y  t h e  nature  of t h e  s t a t e s  from which the  corresponding e lec-  

t rons  were photoexcited. This appears t o  be t h e  f irst  example of tempera- 

tu re  dependent photoemission data y ie ld ing  s i g n i f i c a n t  add i t iona l  in- 

formation about t h e  e l e c t r o n i c  s t a t e s  of the s o l i d  being s tudied.  This  

is  because t h e  s i l v e r  halides possess  a number of unique p rope r t i e s ;  of 

primary importance i s  t h a t  only the hybridized e l ec t ron ic  s t a t e s  s t rongly  

Some s t r u c t u r e  i n  t h e  EDCs showed enormous changes upon cooling 

kBT ). This e f f e c t  was not only 

The d i f -  

i n t e r a c t  w i t h  t he  l a t t i c e .  

l a t t i c e  through teqpera ture  var ia t ion ,  we thereby have a method of sepa- 

r a t i n g  out these  s t a t e s  from t h e  "purer" e l e c t r o n i c  s t a t e s .  The e x i s t i n g  

equipment was not s u i t e d  f o r  t h e  d e t a i l e d  temperature dependent photo- 

By varying t h e  v ibra t iona l .  energy of the 

emission s tudy needed t o  take advantage of t h i s  new e l ec t ron ic  s t a t e  

ana lys i s  technique. 

made, new apparatus  was designed and b u i l t ,  and new techniques were 

developed t o  measure, f o r  t he  f irst  time, t h e  dependence of EDCs on 

temperatures ranging continuously from room t o  l i q u i d  ni t rogen values.  

Using these  techniques, the  Ag s t a t e s  with almost pure 4d symmetry 

Major modif icat ions of e x i s t i n g  equipment had t o  be 
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could be experimentally located,  f o r  t h e  first time, More information 

was determined about t h e  e l e c t r o n i c  s t a t e s  than  was ever known before .  

The methods of using W photoemission t o  study the  e l e c t r o n i c  s t a t e s  of 

s o l i d s  were thereby extended t o  y ie l t i  information about t h e  s t a t e s  of 

t h e  s i l v e r  ha l ides  which at best would have otherwise been mere specu- 

l a t  ion  

This very s t rong  e l e c t r o n - l a t t i c e  i n t e r a c t i o n  i n  t h e  s i l v e r  ha l ides  

a lso  can be used i n  the  s tudy of t h e  o p t i c a l  e x c i t a t i o n  process.  I n  

add i t ion  t o  i t s  s igni f icance  i n  the  photographic process, t h e  photo- 

e x c i t a t i o n  process  is of p a r t i c u l a r  i n t e r e s t  because these  compounds 

age intermediate  between c l a s s i c  narrow band ga-p semiconductors and 

wide band gap i n s u l a t o r s ,  This suggests t h a t  c r y s t a l  momentum might be 

erved i n  some t r a n s i t i o n s  while not i n  o the r s .  Since cooling t h e  

s o l i d  w i l l  reduce t h e  l a t t i c e  v i b r a t i o n a l  e f f e c t s  on the  e l e c t r o n i c  

states, a temperature dependence of the  s e l e c t i o n  r u l e s  f o r  t h e  photo- 

e x c i t a t i o n  processes  may be observed. I n  p a r t i c u l a r ,  k-conservation may 

become an important s e l e c t i o n  r u l e  a t  low temperatures f o r  t r a n s i t i o n s  

i n  which k is  not conserved a t  high temperatures.  

This inves t iga t ion  of t h e  e l e c t r o n i c  s t a t e s  and o p t i c a l  e x c i t a t i o n  

process  of t h e  s i l v e r  ha l ides  using temperature dependent photoemission 

techniques i s  descr ibed i n  d e t a i l  i n  t h i s  r epor t .  The amount of  knowledge 

accumulated over t h e  years  f o r  AgCl and AgBr f a r  exceeds t h a t  f o r  AgI. 

One reason f o r  t h i s  i s  t h a t  the former compounds a re  more similar t o  each 

o the r  than t o  AgI. This i s  t r u e  f o r  such c h a r a c t e r i s t i c s  as c r y s t a l  

s t r u c t u r e  and i o n i c i t y .  Not only does t h e  g r e a t e r  knowledge accumulated 

on AgCl and AgBr make t h e i r  photoemissive proper t ies  s impl ie r  to analyze, 

bu t  a l s o  some of t he i r  c h a r a c t e r i s t i c s  make them e a s i e r  t o  i n t e r p r e t  

(e ,ga ,  g r e a t e r  i o n i c i t y  and s impl ie r  c r y s t a l  s t r u c t u r e )  a I n  addition, 

t h e  EDCs of &I d i f f e r  s i g n i f i c a n t l y  i n  charac te r  f r o m t h e  o ther  s i l v e r  

h a l i d e s e  Thus, AgCl and AgBr a re  t r e a t e d  toge ther  f irst  and then t h e  

photoemission f r o m  AgI is  discussed and cogpared w i t h  t h e  o ther  halides.  

This t h e s i s  is w r i t t e n  d i f f e r e n t l y  from previous ones. Rather than 

present ing  t h e  experimental  data a l l  a t  one time o r  d iv id ing  it by ind i -  

vidual mater ia l s  or experiments (e .g,, high and low temperatures), t he  
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data is  presented according t o  the  conclusions which a re  determined from 

it. Only the  new aspec ts  of t h i s  work w i l l  be discussed.  References 

t o  previous papers  o r  theses  w i l l  s u f f i c e  f o r  such th ings  as s tandard 

photoemission experimental  techniques and t h e o r e t i c a l  models. 

Following a d iscuss ion  of the e f f e c t s  of temperature v a r i a t i o n  on 

photoemission from s o l i d s  i n  t h e  next chapter, re levant  AgCl and AgBr 
p r o p e r t i e s  a r e  presented i n  Chapter 111. A d iscuss ion  of experimental 

techniques w i l l  be presented i n  Chapter IV which includes not only t h e  

sample prepara t ion  and cool ing techniques but  a l s o  sample r ep roduc ib i l i t y  

and s t a b i l i t y  and parameters a f f e c t i n g  s i l v e r  ha l ide  EDCs. I n  Chapter V, 

t h e  t e q e r a t u r e  dependent broadening of AgCl and AgBr EDCs is discussed. 

The d a t a  i n  the  low hV region (< 11 eV> is presented. The dynamic 

hybr id iza t ion  model is discussed i n  d e t a i l  and ca l cu la t ions  are presented 
4 

using a t igh t -b inding  band modelj3 pressure  dependent o p t i c a l  data,  and 

atomic wavefunctions and p o t e n t i a l s  .5 In  Chapter VI ,  t h e  Ag(4d) e lec-  

t r o n  s t a t e s  i n  these  two ha l ides  a r e  loca t ed  from t h e  temperature de-pen- 

dent EDC d a t a  above 11 eV.  

t o  confirm these  loca t ions  by probing the  e n t i r e  valence band width a re  

a l so  discussed,  

f ea tu re s  a re  r e l a t e d  t o  t h e  c h a r a c t e r i s t i c s  of t h e  conduction s t a t e s  i n  
C h q t e r  V I I .  I n  Chapter V I I I ,  t h e  new information about the AgCl and 

AgBr  e l e c t r o n i c  s t a t e s  determined by t h i s  study is summarized, These 

r e s u l t s  are compared t o  publ ished energy bands396 and the photcemissive 

.p roper t ies  of t h e  cuprous ha l ides  

these  s i l v e r  ha l ides  is a l so  discussed i n  t h i s  chapter .  The photo- 

emission EDCs of  AgI 

the  o ther  s i l v e r  ha l ides ,  es t imates  a re  made f o r  t h e  e l ec t ron ic  s t a t e s  

of t h i s  s o l i d .  Some of the  conclusions of t h i s  work and suggestions f o r  

fu tu re  s tud ie s  are presented i n  Chapter X. 

Windowless experiments (hv > 11.8 eV) performed 

The o the r  major temperature dependent AgBr  and A g C l  EDC 

The o p t i c a l  e x c i t a t i o n  process i n  

a re  discussed i n  Chapter IX and by comparison t o  
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I I a  EFFECT OF TEMPERATURE ON PHOTOEMISSION FROM SOLIDS 

I n  t h i s  chapter  t h e  temperature dependence of t h e  photoemission 

EDCs observed f o r  many c l a s ses  of s o l i d s  w i l l  be reviewed. A s  w i l l  be 

seen, t h e  dependence of s i l v e r  ha l ide  photoemission on temperature is 

fundamentally d i f f e r e n t  from t h a t  measured from most o ther  s o l i d s  

s tud ied  t o  d a t e ,  Theories which have been used i n  the  p a s t  t o  expla in  

temperature dependent o p t i c a l  phenomena w i l l  be discussed e A dynamic 

hybr id iza t ion  of t h e  e l e c t r o n i c  wavefunctions is proposed as t h e  most 

p l a u s i b l e  explanat ion f o r  t h e  d i f f e rence  i n  s i l v e r  ha l ide  photoemission 

from t h a t  of o the r  s o l i d s o  Only the  main f ea tu res  of  t h e  d a t a  and of 

t h e  arguments t h a t  expla in  t h e  e f f e c t s  a r e  presented.  Detai led discus-  

s i o n  is  defer red  t o  the  main t e x t ;  i n  p a r t i c u l a r ,  ca l cu la t ions  based on 

the  dynamic hybr id iza t ion  model, which support t h e  a p p l i c a b i l i t y  of t h i s  

model to t h e  s i l v e r  hal ides ,  a r e  given i n  Chzpter V. 

A. Temperature Dependent Mechanisms Affect ing the  Photoemission 

Process 

To understand the  changes which occur i n  photoemission upon cooling 

a so l id ,  one must consider  t h e  physics  of both the  temperature va r i a -  

t i o n  and photoelectron emission processes .  

is lowered by reducing t h e  v i b r a t i o n a l  energy of the  c r y s t a l  l a t t i c e .  

Thus, any changes which occur i n  t h e  photoemission must be r e l a t e d  t o  

t h e  a l t e r e d  ion ic  v ib ra t ions  e Probably the  most convenient t e q e r a t u r e  

parameter descr ib ing  the  dynamical motion of  t h e  l a t t i c e  i s  the  Debye 

temper a t  u re  OD e For our purposes, t h i s  teGperature can be thought 

of as t h e  thermal energy corresponding t o  t h e  high energy cutoff  of  t he  

phonon d i spe r s ion  i n  the  Debye approximation. That is, i f  the  phonons 

a re  considered as having a constant  d i s t r i b u t i o n  from zero t o  t he  Debye 

The temperature of a s o l i d  
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energy hVD , then  t h e  Debye temperature is  def ined as 

The Debye approximation is  most appl icable  t o  t h e  acoust ic  phonon modes. 

Thus, f o r  a real s o l i d  one can t h i n k  of the  Debye temperature as t he  

temperature a t  which t h e  most ene rge t i c  acous t ic  phonons Bse just 
exc i t ed .  I n  most cases, t h i s  i s  very near ly  the energy a t  which t h e  

op t i ca l  modes a re  first exc i ted .  A couple of good references t o - t h i s  

viewpoint of t h e  Debye temperature a r e  Smith 7 and Ziman.' The 
9-12 re ferences  

i n  t h i s  t h e s i s .  

were used as sources f o r  t h e  Debye temperatures quoted 

Photoemission can be thought of as a three-s tep  process:  o p t i c a l  

e x c i t a t i o n  of an e l e c t r o n  followed by t r anspor t  t o  t h e  surface of the 

s o l i d  with eventual. escape i n t o  vacuum. I n  consider ing t h e  e f f e c t s  of 

temperature v a r i a t i o n  on photoemission, it is  most he lp fu l  t o  consider 

t h e  e f f e c t s  i n  each o f  these s t e p s  sepa ra t e ly .  

1. Escape 

I n  order  f o r  the  photoelectron t o  escape from the  s o l i d  i n t o  vacuum, 

it m u s t  overcome the  p o t e n t i a l  energy b a r r i e r  at the  sur face ,  The energy 

assoc ia ted  with t h e  v e l o c i t y  component normal t o  t h e  sur face  must be 

g r e a t e r  than the  e l e c t r o n  a f f i n i t y .  

with which an e l e c t r o n  can escape t h e  s o l i d d  A "threshold func t ionf f9  

T(E)  , defined as t h e  p r o b a b i l i t y  f o r  an e l e c t r o n  with energy, E , 
1 at the sur face  t o  escspe from t h e  s o l i d  is used t o  account f o r  t h i s ,  

This def ines  a "cone" of v e l o c i t i e s  

I n  prac t ice ,  T(E)  is usua l ly  taken as a s t e p  function, a f r ee -  
1 - 

e lec t ron  escape func t ion  with an E2 
nologica l  va r i ab le .  This func t ion  w i l l  be a f f ec t ed  by any changes i n  

t h e  sur face  p o t e n t i a l  (e.g., change i n  populat ion of t he  surface s t a t e s )  

and of course, by a change i n  the  e l e c t r o n  a f f i n i t y .  The important 

po in t  t o  r e a l i z e  is  t h a t  a change i n  

p r imar i ly  near th reshold  and w i l l  be uniform f o r  a l l  t he  EDCss 

as w i l l  be seeng t h e r e  a re  l a r g e  EDC changes upon temperature v a r i a t i o n  

many eV above t h e  threshold,  it zppears t h a t  an enhanced photoelectron 

dependence, or used as a phenome- 

T(E) upon cooling w i l l  be seen 

Since, 
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escape i s  not t h e  process  which i s  of primary importance. 

b i l i t y  of an increased  escqpe p r o b a b i l i t y  due t o  enhanced s c a t t e r i n g  

i n t o  t h e  escape cone w i l l  be considered i n  t h e  next s e c t i o n  on t r a n s p o r t  

The poss i -  

2 ,  Transport  

The photoe lec t ron  can change i t s  energy on t h e  way t o  t h e  sur face  

by s c a t t e r i n g ,  

temperature v a r i a t i o n s  a r e  those  which involve t h e  i n t e r a c t i o n  of t h e  

e l e c t r o n  with t h e  l a t t i c e s  The most common mechanism of t h i s  type is 

the  change i n  e l e c t r o n  energy caused by t h e  c r e a t i o n  (emission) or 
a n n i h i l a t i o n  (absorp t ion)  of a phonon. 

e l e c t r o n  energy w i l l  zppear i n  t h e  measured EDC as a r e p l i c a  of t h e  

a c t u a l  f i n a l  s t a t e  energy j u s t  a f t e r  t h e  o p t i c a l  e x c i t a t i o n  which i s  

broadened and s l i g h t l y  s h i f t e d  t o  lower ene rg ie s ,  

depths  of t h e  :photoelectrons a t  t h e s e  ene rg ie s  a r e  normally l e s s  than  

100 g, t h e  t o t a l  s c a t t e r i n g  h i s t o r y  of any e l e c t r o n  usua l ly  involves 

only a s m a l l  number of phonons. 

energy is  on t h e  order  of 3 meV and t h e  LO phonon energy around 20 meV. 

Thus, t h e  ene rg ie s  involved i n  such s c a t t e r i n g  events a re  normally much 

less than  Oel eV. A s  t h e  temperature i s  lowered, t h e  p r o b a b i l i t y  of 

absorbing a phonon is  g r e a t l y  diminished and hence t h e  electron-phonon 

s c a t t e r i n g  w i l l  be  reduced. This w i l l  cause a sharpening i n  EDC s t r u c -  

t u r e  and a s h i f t  due to t h e  asymmetry of t h i s  narrowing. However, s ince  

t h e  ene rg ie s  i n  t h e  high temperature broadening are so  small t o  begin  

with, t h e  sharpening and s h i f t i n g  of EDC s t r u c t u r e  w i l l  be very small, 

. A s  w i l l  be seen i n  normally be ing  comparable t o  t h e  change i n  

s e c t i o n  C, t h e  changes i n  t h e  photoemission upon cooling a wide v a r i e t y  

of s o l i d s  a r e  q u i t e  small, For t h e  most p a r t ,  t hese  changes can be 

explained simply by t h i s  process  of absorp t ion  or emission of a few 

phonons by t h e  photoexci ted e l e c t r o n .  

The s c a t t e r i n g  processes  of importance when considering 

The r e s u l t i n g  changes i n  t h e  

Since t h e  escqpe 

I n  t h e  s i l v e r  ha l ides ,  t h e  LA phonon 
1.3,14 

kBT 

One o t h e r  t r a n s p o r t  mechanism involving t h e  e l e c t r o n - l a t t i c e  i n t e r -  

a c t i o n  which we must consider i s  t h a t  of t h e  e l e c t r o n  energy being 

per turbed  by t h e  energy of t he  polaron. A polaron i s  formed by an 

e l e c t r o n  moving i n  an ion ic  c r y s t a l  and t h e  p o l a r i z a t i o n  of t he  l a t t i c e  

around it which w i l l  move with t h e  e l ec t ron .  9 This moving e l e c t r o n  thus  

7 



has the p o s s i b i l i t y  t o  e x c i t e  or absorb " v i r t u a l  phonons" no matter  what 

i t s  ve loc i ty .  The e f f e c t i v e  energy of t h e  e l ec t ron  w i l l  be decreased 

cont inua l ly  as it moves through the s o l i d  wi th  t h e  loss being a func t ion .  

of the  e l ec t ron '  s veloci ty ."  

t h e  photoelectron surrounded by a cloud of " v i r t u a l  phononsP', 

appl icable  to i on ic  c r y s t a l  l i k e  t h e  s i l v e r  o r  a l k a l i  ha l ides .  This  

process  w i l l  be temperature dependent s ince  one can imagine t h e  amount 

of l a t t i c e  p o l a r i z a b i l i t y  being a f f ec t ed  by t h e  amplitude of t h e  vibra-  

t i o n s  of t he  ions about t h e i r  equi l ibr ium l a t t i c e  s i t e s .  The major  

l i m i t a t i o n  of  t h i s  mechanism i s  t h a t  t he  i n t e r a c t i o n  can only r e s u l t  i n  

a l o s s  i n  e l ec t ron  energy and hence an asymmetric EDC broadening wi th  a 
peak s h i f t  to lower energy. 

t h i s  t hes i s ,  t h e  measured peak s h i f t  is  a t  l e a s t  an order  of magnitude 

l e s s  than  the broadening and is neg l ig ib l e  i n  most cases .  Thus, t h i s  

mechanism is probably not 8ppl icable  a 

This  polaron "scat ter ing;  cons is t ing  of 

is only 
8 

A s  w i l l  be seen by t h e  d a t a  presented i n  

The f i n a l  s t a t e  energy of t h e  photoelectron following e x c i t a t i o n  

may be g r e a t e r  than  t h e  e l e c t r o n  a f f i n i t y  of t he  s o l i d  but because of 

t h e  d i r e c t i o n  of i t s  veloci ty ,  it does not f a l l  wi th in  t h e  escape cone; 

thus, i f  i ts  v e l o c i t y  remains unperturbed, it w i l l  not be emitted i n t o  

vacuum, The e l e c t r o n  may however i n t e r a c t  with t h e  l a t t i c e  thereby 

changing i t s  real  momentum b u t  not appreciably changing i ts  energy, 

There i s  then the p o s s i b i l i t y  of  s c a t t e r i n g  i n t o  t h e  escape cone and 

obta in ing  an enhanced number of e l ec t rons  emit ted.  

process  would be temperature dependent by v i r t u e  of t h e  temperature 

dependence of t h e  l a t t i c e  v ib ra t ion .  

on t h e  EDCs is a modulation of t he  peak s t r eng ths .  However, t h i s  would 

probably only broaden t h e  s t r u c t u r e  on the  order  of t h e  o p t i c a l  phonon 

energy, about 20  meV. 13914 This i s  c l e a r l y  too small  t o  explain the  

measured s i l v e r '  ha l ide  temperature dependent broadening, 

16 Such a s c a t t e r i n g  

The major e f f e c t  t h i s  would have 

30 OP t i c a l  Trans it ion 

The o-ptical e x c i t a t i o n  process  is a l ight- induced t r a n s i t i o n  of  an 

e l e c t r o n  between two states of t h e  s o l i d ,  I n  consider ing the a f f e c t  of 

temperature v a r i a t i o n  on t h e  exc i ta t ion ,  we must examine the  t r a n s i t i o n  

and t h e  s t a t e s  involved i n  the t r a n s i t i o n  sepa ra t e ly ,  The former w i l l  



be discussed here  while t h e  l a t t e r  is presented i n  sec t ion  Be 
t i o n s  which conserve c r y s t a l  momentum, k , may do so  not only by being 

%e rt i c  altS (kf - k 

(kf - ki - 
with 9 ' n ~ n d i r e c t s P  which need not conserve k 

dependent s ince  at very low temperatures only phonon emission would be 

poss ib le .  This type of t r a n s i t i o n  would be very d i f f i c u l t  t o  observe i n  

photoemission except near th reshold  s ince  it i s  a second-order process ,  

Since t h e  l a r g e  temperature dependence which i s  observed i n  t h e  s i l v e r  

ha l ides  occurs many eV above threshold  f o r  qu i t e  s t rong  EDC s t r u c t u r e  

( = 0,05 e lec t rons  p e r  inc ident  photon p e r  eV) ,  it i s  un l ike ly  t h a t  t h i s  

i s  an important process.  

Transi-  

= 0 )  but a l s o  by phonon emission o r  absorption 

). Such " ind i r ec t "  t r a n s i t i o n s  (not t o  be confused 
i 

- ' k~~~~~ 
) would be temperature 

The matr ix  elements involved i n  t h e  o p t i c a l  t r a n s i t i o n s  may be 

dependent on temperature. This  would occur i f  one of t h e  s t a t e s  has a 

hybridized basis func t ion  which was temperature dependent because of a 

v i b r a t i o n a l l y  dependent mixing ( t h i s  dynamic hybr id iza t ion  w i l l  be 

discussed f u l l y  below) 

t i o n  matr ix  element w i l l  be much smaller  than  t h a t  of t he  energy of t he  

hybridized s t a t e  i t se l f  Thus, t h i s  w i l l  probably be a second-order 

process  and not of primary importance i n  analyzing t h e  observed photo- 

emission temperature dependence. 

The temperature dependence of t h e  dipole  t r a n s i -  

The mechanisms discussed above dea l  d i r e c t l y  with the  photoemission 

process  i t se l f ,  As was indica ted  and w i l l  be abundantly c l e a r  i n  

s e c t i o n  C, none of these  involve l a rge  enough energies  t o  expla in  the  

g i a n t  changes i n  s i l v e r  ha l ide  EDCs upon cooling. 

expect t h a t  what is occurr ing i n  the EDCs is c h a r a c t e r i s t i c  of t h e  e lec-  

t r o n i c  s t a t e s  of t h e  s o l i d  r a t h e r  than  t h e  photoemission used t o  study 

them, Temperature dependent processes  which a f f e c t  the  e l e c t r o n i c  s t a t e s  

It i s  reasonable t o  

d i r e c t l y  a re  discussed below a 

B. Temperature Dependent Mechanisms Affecting t h e  Elec t ronic  S t a t e s  

of Sol ids  

There a re  many temperature dependent processes  which have been 

proposed t o  expla in  var ious o p t i c a l  phenomena. Most of these  dea l  with 
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changes i n  t h e  o p t i c a l  absorpt ion edge r e s u l t i n g  from t h e  temperature 

dependence of t h e  energy band gap. This is done because o p t i c a l  ab- 

so rp t ion  is an in t eg ra t ed  e f f e c t  from t h e  onset  of t r a n s i t i o n s  up t o  

t h e  photon energy of measurement. 

t e r i s t i c  of t h e  e f f e c t  on a p a r t i c u l a r  s e t  of e l ec t ron  energy l eve l s .  

I n  photoemission, however, at each photon energy t h e  d i s t r i b u t i o n  i n  

energy of t h e  photoemitted e l ec t rons  is measured., Therefore, even 

though most t h e o r i e s  have been appl ied to t h e  band gap and are discussed 

i n  these  terms below, t h e  phys ica l  processes  a r e  equal ly  appl icable  to 
all t h e  s t a t e s  and hence the  measured E D C s o  Only those theo r i e s  which 

are most prominent will be discussed. A s  w i l l  be  c lear ,  none of these  

involve energies  l a r g e  enough to explain t h e  observed s i l v e r  ha l ide  EDC 

changes. As  an extension of two of these  t reatments  a dynamic hybridi-  

z a t i o n  model is proposed t o  expla in  t h e  effects. 

t ens ive  search of t he  l i t e r a t u r e  was made, we have not found such a 

process  discussed. 

Thus, only the  edge w i l l  be chasac- 

Though a f a i r l y  ex- 

1. Deformation P o t e n t i a l  

The e f f e c t  on the  e l e c t r o n i c  states of t he  thermal cont rac t ion  of 

t h e  l a t t i c e  has been considered i n  t h e  covalent bonding caseo l7 

is  t h e  c l a s s i c a l  t reatment  of t h e  temperature dependence of the band 

gap i n  terms of deformation p o t e n t i a l  theory.  The decrease of the 

l a t t i c e  constant  is expressed i n  terms of an average d i l a t a t i o n  of  t h e  

l a t t i c e .  The theory p r e d i c t s  an increas ing  band gap with decreasing 

terqperature. Such an e f f e c t  c e r t a i n l y  occurs i n  s o l i d s  as  is evidenced 

by t h e  normal s h i f t  of absorpt ion coe f f i c i en t ,  a , to higher photon 

energy upon cool ing (e.g., t h e  s i l v e r  and a l k a l i  ha l ides  shown i n  

Figures 3.8 and 3.9 i n  Chapter 111) a 

cont rac t ion  e f f e c t  can only account f o r  a s m a l l  p a r t  of t he  observed 

s h i f t s . 1 7  

t reatment  of t he  temperature dependence is  adequate This  is  s ign i -  

f i c a n t  not only because it shows t h a t  t h i s  is not t he  only mechanism, 

but a l s o  because many o ther  processes  a re  comparable i n  magnitude to t h e  

thermal expansion e f f e c t .  

This 

However, a pure ly  thermal l a t t i c e  

In  f a c t ,  there 8.ppear t o  be no known cases where such a 
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One of t h e  most ex tens ive ly  inves t iga ted  temperature dependent 

o p t i c a l  phenomena i s  Urbach’ s empir ica l  r e l a t i o n s h i p  between t h e  o p t i c a l  

absorpt ion edge of nonmetall ic s o l i d s  and temperature which was first 

discovered f o r  t h e  s i l v e r  halidesel’  A t  p resent  t he re  is no s i n g l e  

s a t i s f a c t o r y  theory which can expla in  i ts  exis tence  i n  such a wide 

v a r i e t y  of s o l i d s  over such a l a r g e  range of temperature and absorption 

coe f f i c i en t .  

d i scuss  a couple of mechanisms proposed by Dexter which appear t o  be 

t h e  most phys i ca l ly  sound. Dexter’’ extended the  deformation p o t e n t i a l  

approach, which had been used t o  expla in  t h e  uniform cont rac t ion  of t h e  

pe r iod ic  l a t t i c e ,  t o  account f o r  t he  non-periodici ty  of t h e  v ib ra t ing  

l a t t i c e ,  Because of t he  expansions and cont rac t ions  assoc ia ted  w i t h  t h e  

l a t t i c e ,  t h e r e  e x i s t  l o c a l  deformation p o t e n t i a l s  which result i n  l o c a l  

v a r i a t i o n s  i n  t h e  band gap. The band gap w i l l  be s t a t i s t i c a l l y  distri- 

buted i n  accordance wi th  t h e  p r o b a b i l i t y  t ha t  a constant uniform d i l a -  

. t a t i on  is r ea l i zed .  Af te r  tak ing  t h e  proper p r o b a b i l i t i e s  and averages, 

t he  r e s u l t i n g  func t ion  behaves l i k e  Urbach’s rule ,  bu t  only over a much 

smal le r  range of temperature and absorpt ion c o e f f i c i e n t  than  is observed.. 

The f a i l u r e  of t h i s  theory t o  l ead  t o  q u a n t i t a t i v e l y  co r rec t  r e s u l t s  i s  
probably due t o  t h e  use of a simple d i l a t a t i o n  f o r  t he  l a t t i c e  d i s t o r t i o n ,  

I n  t he  thermal cont rac t ion  case it can be used e f f e c t i v e l y  s ince  the  

l a t t i c e  i s  undergoing a uniform deformation. However, using it f o r  t h e  

l a t t i c e  v ib ra t ions  conrpletely smooths t h e  d e t a i l s  o f  t he  electron-phonon 

in t e rac t ions .  

cont rac t ion  was c l e a r l y  not t h e  dominant process  i n  producing a s h i f t  i n  

a wi th  temperature v a r i a t i o n .  In  t h i s  case? a l l  t h a t  can be concluded 

is t h a t  a l o c a l  d i s t o r t i o n  of  the  l a t t i c e  cannot be t r e a t e d  by deforma- 

t ion  p o t e n t i a l  theory 

A good genera l  review is  given by Knox.20 We w i l l  b r i e f l y  

20 

I n  t h e  former case, one could conclude t h a t  t he  thermal. 

2, Dynamic S tark  S h i f t  

Another method of t r e a t i n g  the  l o c a l  d i s t o r t i o n  is  t o  consider its 
e f f e c t  i n  t e rms ,o f  t he  l o c a l  e l e c t r i c  f i e l d s  which a re  produced by the  

o p t i c  modes of t h e  l a t t i c e  vibrat ionse2’  This approach is  based on the  

usua l  quadra t ic  S ta rk  s h i f t  of  t h e  e l e c t r o n  energy which is  produced by 

the  app l i ca t ion  of a uniform e l e c t r i c  f i e l d  t o  a s o l i d o  For t h e  o p t i c a l  
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phonon modes of a polar  c rys t a l ,  a v i b r a t i n g  atom i n  a c r y s t a l  experi- 
ences e l e c t r i c  f i e l d s  due t o  t h e  l o c a l  deformations of  t h e  l a t t i c e ,  The 

magnitude of t h e  f i e l d  i s  determined by t h e  degree o f  i o n i c i t y  and/or 

t h e  amount of overlapping of t h e  charge d i s t r i b u t i o n s ,  

shape f o r  an o p t i c a l  t r a n s i t i o n  w i l l  be s h i f t e d  i n  proport ion t o  the  
Thns, t h e  l i n e  

' square of the  l o c a l  f i e l d  and then averaged over t h e  f i e l d  wi th  a 
weighting f a c t o r  which i s  propor t iona l  t o  t h e  p r o b a b i l i t y  of f ind ing  a 

given f i e l d  s t r eng th  at an atomic site. 
f o r  explaining Urbach's r u l e  because it does not requi re  a pe r iod ic  

p o t e n t i a l  and can thus be zppl ied t o  t h e  many d iverse  s o l i d s  i n  which 

the  r u l e  is appl icable  (e,g., amorphous s o l i d s  and impuri t ies  i n  a l k a l i  

This approach is very promising 

h a l i d e s ) .  

t h i s  is p r e c i s e l y  one of i t s  shortcomings. This theory (and Urbach's 

r u l e  f o r  t h a t  mat te r )  is appl icable  t o  amorphous s o l i d s  and t h e  

a l k a l i  ha l ides ;  i n  f ac t ,  KBr obeys Urbach's empir ical  r e l a t i o n  over t h e  

l a r g e s t  temperature and absorpt ion c o e f f i c i e n t  range of any s o l i d  

s tud ied .  

cooling t h e  s i l v e r  ha l ides  is  d i f f e r e n t  from the  e f f e c t  on most of t h e  

alkali ha l ides .  Thus, it would be d i f f i c u l t  t o  understand how a theory 

which explains  o p t i c a l  phenomena common t o  both could a l so  explain a 

proper ty  so v a s t l y  d i f f e r e n t  e 

s h i f t  assumes small phonon f i e l d  s t r eng ths  and uses second-order per -  

t u r b a t i o n  theo rye21  

be explained by such a second-order e f f e c t ;  t he  broadenings pred ic ted  by 

t h i s  v i b r a t i o n a l  e f f e c t  (Figure 1 of  reference 21)  appear t o  be too  

s m a l l .  

For t h e  temperature dependent changes i n  photoemission EDCs, 

A s  w i l l  be seen i n  s e c t i o n  C, t h e  e f f e c t  on the  EDCs of 
20 

I n  addition, Dexter* s v i b r a t i o n a l  S t a rk  

The e f f e c t s  on t h e  s i l v e r  ha l ides  a re  too  l a rge  t o  

3 e Pola r i za t ion  F ie ld  

This f i e l d  e f f e c t  of t h e  o p t i c  phonon modes can be taken one s t e p  

f u r t h e r  €or  p o l a r  c r y s t a l s  i n  which t h e  cooperation of many atoms pro- 

duces a p o l a r i z a t i o n  f i e l d .  This has a much g r e a t e r  per turb ing  e f f e c t  

on t h e  e l e c t r o n i c  s t a t e s  than t h e  e f f e c t  of t h e  l o c a l  d i s t o r t i o n  of t h e  

l a t t i c e  f i e l d e Z 2  

l a t t i c e  and thereby s c a t t e r s  i n t o  another s t a t e .  

i s  s o  s t rong  i n  these  so l ids ,  t h e  s c a t t e r i n g  time, and thus the  l i f e t i m e  

The e l e c t r o n  c o l l i d e s  with the  thermally v ib ra t ing  

Since the  i n t e r a c t i o n  
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of  t h e  states, is shor t ,  By t h e  Heisenberg Uncertainty Principle ,  t h i s  

shortened l i f e t i m e  is equivalent  t o  a minimum uncer ta in ty  i n  the  energy 

of t h e  unsca t te red  e l e c t r o n i c  s t a t e .  One of t h e  s i g n i f i c a n t  th ings  

about t h i s  mechanism is  t h a t  it dea ls  w i th  e l e c t r o n i c  states of t h e  

s o l i d s  which change wi th  time ( i - e . ,  nonstat ionary s t a t e s ) *  When 

averaged over an appropr ia te ly  long per iod  of time o r  large number of 

o p t i c a l  exc i t a t ions ,  a broadened l e v e l  would be detected.  For po la r  

so l id s ,  which the  treatment app l i e s  to,  t h i s  e f f e c t  is about four  times 

l a r g e r  than  t h e  almost i n s i g n i f i c a n t  thermal cont rac t ion  e f f e c t ,  The 

theory  has a t  l e a s t  two shortcomings for our appl ica t ions .  

p o l a r i z a t i o n  f i e l d  would be g r e a t e r  f o r  t he  a l k a l i  than t h e  s i l v e r  

ha l ides  s ince  t h e  former a re  more ion ic ,  Thus, one would p r e d i c t  a 

l a r g e r  broadening f o r  t h e  a l k a l i  ha l ide  energy l e v e l s  and hence t h e i r  

EDCs. A s  w i l l  be seen i n  s e c t i o n  C, t h i s  is t h e  opposite of what has 

been measured t o  da te .  

a f fec ted  t h e  same by t h i s  process;  t h i s  a l s o  is counter t o  the  s i l v e r  

ha l ide  da ta .  

22 

F i r s t ,  t he  

I n  addi t ion,  a l i  e l e c t r o n i c  s t a t e s  would be 

4 e Elec t ron-Lat t ice  I n t e r a c t i o n  Energy 

O f  course, t h e  e l ec t rons  a r e  not only s c a t t e r e d  by t h e  v ib ra t ing  

l a t t i c e ,  they  a l s o  i n t e r a c t  wi th  it. The e l e c t r o n - l a t t i c e  i n t e r a c t i o n  

energy w i l l  change due t o  the  l a t t i c e  d i s t o r t i o n ,  This i n t e r a c t i o n  

w i l l  thus  depend on t h e  s t a t e  of t h e  e l e c t r o n  because of d i f f e r i n g  

charge d i s t r i b u t i o n s  among the  s t a t e s .  Fan has found t h a t  i n  ca lcu la-  

t i n g  t h i s  e f f e c t  on an o p t i c a l  t r a n s i t i o n ,  it is only comparable t o  t h e  

thermal l a t t i c e  cont rac t ion  e f f e c t .  l7 

magnitude l a r g e r  than  t h e  s c a t t e r i n g  broadening o f  RadkowskyZ2 f o r  non- 

p o l a r  s o l i d s .  

r e s u l t  o f  c a l c u l a t i n g  a second-order per turb ing  e f f e c t  on the  s ta t ionary ,  

f r o z e n - l a t t i c e  s t a t e s  of t h e  s o l i d .  It should be noted t h a t  t h i s  method 

can only expla in  a n  increasing band gap upon cool ing while t he  opposite 

e f f e c t  has been observed. 

It is, however, three orders  of 

The s m a l l  magnitude of Fan's treatment is perhaps the  

23 



5 e Temperature Dependent Pseudopotential  

One can expla in  both  d i r e c t i o n s  of band gap change upon cool ing i f  

the "s ta t ionary"  ( i .e time-independent), v i b r a t i n g - l a t t i c e  states of 

t h e  s o l i d  a re  used. 

t u r e  dependence of t h e  e l e c t r o n i c  states e x p l i c i t l y  r a t h e r  than  ca lcu la-  

t i n g  how t h e  s t a t e s ,  computed i n  a per iodic ,  non-vibrating l a t t i c e ,  are 

s h i f t e d  o r  broadened due t o  a departure  from p e r i o d i c i t y  or a change i n  

t h e  l a t t i c e  cons tan t ,  This is done i n  the pseudopotent ia l  formalism by 

rep lac ing  each atomic form f a c t o r  with a temperature-dependent form 

fac tor ;23  it is obtained by mult iplying t h e  normal form f a c t o r  by the  

x-ray broadening, Debye-Waller f a c t o r .  This is t h e  same f a c t o r  which 

i s  used t o  determine the r m s  i on ic  displacement discussed i n  Chapter V. 
The success of t h i s  method ind ica t e s  t h a t  t h e  e l e c t r o n i c  states are  

a f f ec t ed  d i r e c t l y  by t h e  l a t t i c e  r a t h e r  than merely through a phonon 

pe r tu rba t ion  of the e l e c t r o n ' s  energy. 

Professor  A. Bienenstock f o r  po in t ing  out t h e  temperature dependent band 

gap work and h e l p f u l  d i scuss ion  of t h i s  last p o i n t e )  This theory  cannot 

be used d i r e c t l y  f o r  our considerat ions because it only appl ies  speci-  

f i c a l l y  to s o l i d s  which can be t r e a t e d  by pseudopotentials ( i , e e ,  where 

the"weak-bindin&' qqxroximation is  v a l i d )  For t h i s  reasotf, t h e  calcu- 
23  l a t e d  s h i f t s  are  s m a l l ;  f o r  FbTe, about 0.10 eV change is ca lcu la ted .  

D i f f e ren t  cons idera t ions  a re  needed for t igh t -b inding  so l ids ,  l i k e  t h e  

s i l v e r  hal ides ,  but the  genera l  p r i n c i p l e  of temperature dependent 

e l e c t r o n i c  s t a t e s  is s t i l l  important.  To ga in  a f u l l  apprec ia t ion  of 

this,  t h e  t igh t -b inding  approximation w i l l  be discussed f u l l y  below, 

The d iscuss ion  w i l l  a l s o  be most valuable  i n  understanding t h e  f a c t o r s  

which con t r ibu te  t o  t h e  energy bands of t h e  s i l v e r  ha l ides  discussed i n  

Chapter 111 and t h e  ca l cu la t ions  presented i n  Chapter V. 

This  is a method of tak ing  i n t o  account t h e  tempera- 

(The author i s  g r a t e f u l  t o  

6. Dynamic Hybridization 

(a) The Tight-Binding Approximation. 

I n  t h e  t igh t -b inding  qpproximation f o r  t he  e l ec t ron  energy s t a t e s  

i n  so l id s ,  t h e  e l e c t r o n i c  wave funct ions a r e  formed from Bloch sums of  

atomic orb it a l s  24 That is, a l i n e a r  combination of atomic o r b i t a l s  
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(LCAO) i s  made i n  which t h e  expansion c o e f f i c i e n t s  are  chosen t o  s a t i s f y  

t h e  Bloch p e r i o d i c i t y  condi t ion.  

s o l i d  i s  then  given by 

The e l e c t r o n i c  wavefunction i n  the 

formed by a superpos i t ion  of t he  normalized atomic o r b i t a l  f o r  t h e  

quantum number n , Y n ( r - r . )  , centered on each atomic s i t e ,  j 

( i e e e ,  t h e  atom j is displaced r from t h e  o r i g i n ) .  Note t h a t  even 

though each o r b i t a l  is normalized, t h e  sum w i l l  not be normalized due 

t o  t h e  overlap between wavefunctions on neighboring s i t e s .  As  a f irst  

approximation, w e  can use these  unnormalized s t a t e s  t o  f i n d  the  expecta- 

t i o n  value of t h e  energy i n  t h e  s o l i d .  From the  eigenvalue equat ion 

4 3  

J -+ 

j 

(' - Ek,n) 'k,n = o  , 

t h e  e l e c t r o n i c  energy E corresponding t o  the  s t a t e  der ived from 

t h e  atomic o r b i t a l  n , f o r  a given c r y s t a l  momentum k , w i l l  be 

given by t h e  s o l u t i o n  of t he  secu la r  equat ion f o r  t h e  hamiltonian, 3?1 , 
which involves a l l  the  s i g n i f i c a n t  atomic s t a t e s  e The p o t e n t i a l  energy, 

V 

po ten t i a l s ,  v , centered on t h e  ind iv idua l  atoms: 

k, n 

, of t h e  hamiltonian is simply given by t h e  superposi t ion of atomic 

4 

V ( r )  = v(; - F'j) (2 04) 
3 

This p o t e n t i a l  i s  cons i s t en t  w i th  the  assumed wavefunctions given i n  

Eq. (2.2) e I n  f a c t ,  t he  atomic energy eigenvalue E , corresponds t o  

t h e  f r e e  atomic s t a t e  Yn found from t h i s  atomic p o t e n t i a l  v e (It 

is equal  t o  t h e  term f o r  i = j = 1, m = n i n  Eq. (2.6) below,) Thus, 

t h e  expectat ion,  value of t h e  energy 

as co r rec t ions  t o  these  f r e e  atom values:  

n 

E i n  the  s o l i d  w i l l  be given 
k9 n 



w i l l  be, i n  general ,  so lu t ions  t o  matr ices  ek,n ' The cor rec t ions ,  

which involve a l l  t h e  s i g n i f i c a n t  atomic o r b i t a l s .  The matrix elements 
f o r  t hese  energy cor rec t ions  w i l l  be of t h e  genera l  f.orm, 25 

where t h e  d e l t a  func t ion  i s  a Kronecker d e l t a  ( i . e e ,  equal  to 1 if  

n = m or 0 otherwise) .  t h  (M) is  t h e  Madelung energy f o r  t h e  n En 
atomic o r b i t a l .  (It is ca l cu la t ed  from Eq. (2.6) f o r  i = j = .f? 9 

n = m wi th  t h e  Madelung ins t ead  of the atomic p o t e n t i a l . )  The energy 

term of t h e  denominator i s  not a c t u a l l y  p a r t  of t h e  matr ix  element but 

is included t o  ind ica t e  'the form of t h e  r e s u l t i n g  cont r ibu t ion  takes  i f  

two d i f f e r e n t  s t a t e s  a re  involved. When t h e  hamiltonian matr ix  i s  

diagonal ized us ing  pe r tu rba t ion  theory t o  f i n d  t h e  energy, t hese  "off-  

diagonal" matr ix  elements e n t e r  t h e  energy with a denominator propor- 

t i o n a l  t o  t h e  d i f f e rence  i n  energy of t he  two s t a t e s  they "connected". 

The a c t u a l  term i n  t h e  secu la r  determinant of course does not have such 

a denominator. However, it is important t o  consider i ts  e f f e c t  when 

s tudying t h e  cont r ibu t ions  t o  t h e  e l e c t r o n i c  energy s t a t e s  i n  the s o l i d .  

The mult i -center  co r rec t ions  ( i * e e ,  all terms exce.pt those f o r  i = j = 1) 

t o  t he  f r e e  atomic energies  w i l l  be h q o r t a n t  if  t he  overlap between 

neighboring wavefunctions and p o t e n t i a l s  is  not negl ig ib le .  If the re  

were no overlap, then  t h e  integrand would be zero f o r  a l l  r s ince  one 

of the t h r e e  terms ( i e e e ,  t h e  p o t e n t i a l  and two wavefunctions) would be 

zero f o r  any r . For t he  genera l  case of i # j # R , each of these  

terms w i l l  have i t s  o r i g i n  on a d i f f e r e n t  atomic s i t e .  I n  most cases 

such three-center  i n t e g r a l s  w i l l  be much smaller  than  the  two-center 

terms and are  thus  neglected i n  t he  usua l  t igh t -b inding  approximation. 

There a re  two ty-pes of two-center terms, U , t o  be considered. Those 

f o r  involve t h e  two atomic wavefunctions on t h e  same center  

and p o t e n t i a l  from the  neighboring atoms. Since the  energies  of any two 

4 

+ 

d = j # i 
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o r b i t a l s  of a given atom usua l ly  a re  not i n  c lose  proximity i n  t h e  

so l id ,  t h e  term between t h e  same o r b i t a l s  ( i e e e ,  m = n ) w i l l  dominate 

t h i s  case because of t h e  energy denominator. 

f o r  3 = j t h e  exponent ia l  t e r m  i s  u n i t y  f o r  a l l  values of k This 

k-independent t e r m  is  simply t h e  expec ta t ion  value at each ion of the 

p o t e n t i a l  from a l l  t he  neighbors. It is thus  a " c r y s t a l  f i e l d "  cor- 

r e c t i o n  t o  t h e  atomic energy eigenvalues def ined as 

Note a l s o  i n  Eq. (2 .6),  

This term is of l i t t l e  i n t e r e s t  here s ince  it has l i t t l e  bear ing  on t h e  

e l e c t r o n i c  s t r u c t u r e  i t s e l f .  25 

The o the r  two-center term f o r  R = i # j is of primary i n t e r e s t  

s ince  it involves atomic func t ions  on d i f f e r e n t  s i t e s  with the  p o t e n t i a l  

a t  one of  t h e  cen te r s .  I n  diatomic so l id s ,  l i k e  the  s i lver  hal ides ,  

the  neares t  neighbor atom is of t he  o the r  cons t i tuent .  Thus, t h e  smal les t  

energy denominator i n  Eq.  (2.6) and hence t h e  l a r g e s t  contr ibut ion,  w i l l  

be for two d i f f e r e n t  o r b i t a l s  ( i e e . 9  

on neighboring s i t e s  e I n  t h e  usual. t igh t -b inding  approximation, only 

such cont r ibu t ions  of neares t  neighbors a re  considered. These k-dependent 

terms are  usua l ly  r e f e r r e d  t o  as t he  two-center overlap i n t e g r a l s  and are  

def ined as 

m # n ) wi th  near ly  equal energies  

where t h e  sum is only over the  neares t  neighbors i of t h e  atom j 

( i e e e ,  r -r is t h e  nearest-neighbor d is tance)  e When t h i s  matr ix  i s  

diagonalized, t h e  r e s u l t i n g  energy f o r  t he  hybridized o r b i t a l  n , 
U , w i l l  be temperature dependent, as w i l l  be explained i n  p a r t  (b) .  

I n  pa r t ,  t h i s  causes the  energy s t a t e s  of t h e  s o l i d  t o  depend on tempera- 

t u r e  i n  the  t igh t -b inding  approximation. 

4 '4 

j i  

k9 n 



There is  a term i d e n t i c a l  t o  Eq. (2.9) b u t  w i t h  t h e  Madelung 

p o t e n t i a l  rep lac ing  t h e  atomic p o t e n t i a l  at the neighboring s i t e  

( i e e e 9  v(~)(;-;~) ) e This  i s  normally lumped i n  with t h e  term of 

Eqo (2.9) and both a re  r e f e r r e d  t o  as U e3 We s h a l l  adopt t h i s  

convention here;  i n  f u t u r e  d iscuss ions  t h i s  mul t i -center  Madelung term 
k, n 

w i l l  be understood t o  be part of t h e  two-center overlap term U (2) 
k, n 

Terms coupling s t a t e s  on two neighboring atoms a l s o  occur i n  t h e  

normalization i n t e g r a l  i n  t h e  denominator of Eq. (2.6) This two-center 

wavefunction overlap term is usua l ly  def ined as a cor rec t ion  t o  uni ty .  

(The result would 

we can w r i t e  

- S - 
k9 r-Jm 

be u n i t y  if t h e r e  were no overlap o r  mixing.) Thus, 

where t h e  del ta  func t ion  is t h e  Kronecker d e l t a .  From the  d iscuss ion  

above of t h e  s i g n i f i c a n t  terms, it is c l e a r  t h a t  f o r  

n = m while if a = i # j , one only considers  n # m cont r ibu t ions  

of near ly  equal  energ ies .  The normalization cor rec t ion  f o r  t h e  n-derived 

s t a t e ,  S , which r e s u l t s  from diagonal iz ing t h i s  matrix, w i l l  a l s o  

be temperature dependent as w i l l  be c l e a r  from t h e  discussion i n  p a r t  (b ) .  

.$ = j # i , 

k, n 

The energy co r rec t ion  C i n  Eq. (2 .5 )  i s  a combination of all 
k, n 

(M) we have 
En 26 

these  f a c t o r s .  

f o r  t he  energy of the  s t a t e  der ived from t h e  atomic o r b i t a l  n , 
Taking i n t o  account t h e  Madelung energy, 

(2 .lo) 

The magnitudes of each of t hese  cont r ibu t ions  t o  t h e  energy bands of 

the  s i l v e r  ha l ides  w i l l  be discussed in  Chapter 111. 

(b) Dynamic Wavefunction JQbridizat ion 

One must now consider  what e f f e c t  t h e  temperature of the  s o l i d  has 

on each of t h e  energy terms i n  Eq. (2.10). I n  o ther  words, how w i l l  

these  cont r ibu t ions  

d is tance  i s  changed 

l a t t i c e ?  The terms 

t o  t h e  energy be a f f ec t ed  when the  interatomic 

due t o  the  thermal v i b r a t i o n  or cont rac t ion  of t h e  

which involve wavefunctions and p o t e n t i a l s  a l l  on 
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t h e  same cen te r  w i l l  not be temperature dependent. 

because these i n t e g r a l s  are i n s e n s i t i v e  t o  t h e  l o c a t i o n  of t he  atoms 

i n  t h e  a d i a b a t i c  approximation. 

func t ions  can ins tan taneous ly  adjust t o  a change i n  pos i t i on  of t he  

atomic core (ice., po ten t i a l ) ,  t hen  t h e  product of t h e  wavefunctions and 

This i s  simply 

That is, i f  one assumes tha t  the wave- 

p o t e n t i a l  cen tered  on a given atom w i l l  be independent of t he  pos i t i on  

of t he  atom. Of course, if there  were a uniform con t rac t ion  of t h e  

However, l a t t i c e ,  t h e  Madelung energy would be s i g n i f i c a n t l y  changed. 27  

f o r  thermal  v i b r a t i o n s  of t h e  ions, t h e  long range nature  of t h e  Madelung 

sum w i l l  cause t h e  changes i n  t h i s  con t r ibu t ion  t o  the  energy t o  average 

t o  zero.  Thus, b o t h  E and E?) w i l l  be  temperature independent s ince  
the l a t t i c e  con t r ac t ion  is  n e g l i g i b l e  over t h e  temperature range of 

in te res t  e 

n 

29 

The mul t i -center  terms w i l l  be dependent on t h e  interatomic separa- 

t i o n .  It should be r e c a l l e d  t h a t  t h e  aeomic p o t e n t i a l  f a l l s  o f f  q u i t e  

r a p i d l y  wi th  d i s t ance  away from t h e  core.5 I n  addition, t o  get a rea-  

sonable r e s u l t  f o r  a band ca l cu la t ion ,  t h i s  p o t e n t i a l  has t o  be screened 26 

thereby  fur ther  reducing i t s  range. One would thus  expect the  Un (1) 

term of Eq. (2.7) which involves  the  wavefunctions on a given s i t e  and 

t h e  p o t e n t i a l  on a neighboring s i t e  t o  be much less dependent on ion ic  

sepa ra t ion  than  t h e  terms involving neighboring wavefunction overlap.  

I ts  dependence on temperature can the re fo re  be neglected.  

The con t r ibu t ions  of the wavefunctions on neighboring s i tes  both  

U (2)  and S wi th  and without a p o t e n t i a l  a t  one of t h e  s i t e s  ( i . e .9  

r e spec t ive ly )  are of primary i n t e r e s t  a If these cont r ibu t ions  cause 

s i g n i f i c a n t  changes i n  t h e  f rozen  l a t t i c e  band ca lcu la t ions ,  then  t h e i r  

changes w i t h  temperature w i l l  be  l a rge .  That i s  t o  say, i f  t he  c o n t r i -  

bu t ion  is  large, then  b o t h  the  overlap of t he  wavefunctions i s  q u i t e  

s i g n i f i c a n t  and the energy of the  neighboring states m and n are 

nea r ly  equal .  If these  circumstances occur i n  a so l id ,  the  r e s u l t i n g  

mixing of t h e  overlapping atomic s ta tes  w i l l  be considerable,  thereby 

producing h igh ly  hybridized s t a t e s  wi th  energ ies  s i g n i f i c a n t l y  s h i f t e d  

from t h e  f r e e  atom va lues .  

s ta tes  are j u s t  t h e  basis func t ions  of t he  diagonal ized hamiltonian 

, k, n k, n 

( I t  should be r e c a l l e d  t h a t  t hese  hybridized 



matrix, formed from a "mixture" of t h e  unperturbed atomic o r b i t a l s  i n  

t h e  process . )  

obviously dependent on the  separa t ion  of t h e  ions, t he  energ ies  of t h e  

hybridized s t a t e s  w i l l  be a f f ec t ed  by changes i n  t h i s  spacingc 

t h e  atoms v i b r a t e  about t h e i r  equi l ibr ium l a t t i c e  posit ion,  t he  dynamic 

changes i n  atomic separa t ion  caused by the  o p t i c  modes w i l l  produce 

considerable  mo&ulation of t h e  energies  of t h e  hybridized states v i a  t h e  

Further,  s ince  t h e  amount of t h i s  wavefunction overlap is  

Thus, as 

terms. Such energy broadening w i l l ,  of course, be 
k, n 

U (2)  and S 
k, n 

temperature dependent, f o r  as t h e  temperature i s  lowered below t h e  Debye 

temper a t  ureg , the dynamicalmotion of t h e  l a t t i c e  is s i g n i f i c a n t l y  

reduced. This w i l l  r e s u l t  i n  smaller  f l u c t u a t i o n s  of t h e  hybr id iza t ion  

w i t h  a corresponding reduct ion  i n  broadening of t h e  energy. 

wavefunction hybr id iza t ion  is a f f ec t ed  by t h e  dynamic motion of t he  

l a t t i c e ,  w e  r e f e r  to t h i s  e f f e c t  as "dynamic hybridizat ion".  The energy 

s h i f t s  caused by t h e  cont rac t ion  of t h e  l a t t i c e  upon cool ing a re  negl i -  

g i b l e  compared to t h i s  e f f e c t  (see Chapter V ) .  

This is the  dominant mechanism producing the  temperature dependent 

OD 

Since the  

changes i n  the  photoemission EDCs of t h e  s i l v e r  ha l ides .  A s  w i l l  be 

discussed i n  the  next chapter, t he  Ag 4d and halogen p s t a t e s  a re  

i n  c lose  proximity i n  energy i n  these  compounds. The mixing of t hese  

wavefunctions is the re fo re  q u i t e  l a rge ;  these  two s t a t e s  would corre-  

spond t o  t h e  two o r b i t a l s  

(1 = i # j ) .  

which use t h e  s i l v e r  and halogen atomic po ten t i a l s  and wavefunctions, 

the r m s  displacement of the  atoms produces q u i t e  s i g n i f i c a n t  changes i n  

the  U (2)  overlap i n t e g r a l s  [Eq. (2.!3)] and S normal i z  a t  ion  

i n t e g r a l s  [Eq. (2.9)] e 
l a t t i c e  v i b r a t i o n  is large,  we c a l c u l a t e  t h a t  t h e  energy l e v e l s  a r e  

broadened by as much as 1 eV by the f l u c t u a t i n g  

l i q u i d  n i t rogen  (LN2) temperature, where the  amplitude of  atomic vibra-  

t i o n s  is small, t h e  hybridized l e v e l s  become sharper  and more we l l  

defined 

(n # m )  i n  t he  two-center overlap case 

A s  w i l l  be seen from ca l cu la t ions  presented i n  Chapter V 
5 

k, n k, n 
A t  room temperature, where t h e  amplitude of the  

p-d overlape2' A t  

It i s  i n t e r e s t i n g  to note t h a t  s ince  the l a t t i c e  v ibra t ions  g r e a t l y  

a f f e c t  t h e  e l e c t r o n i c  s t a t e s  d i r e c t l y ,  t h e  Born-Oppenheimer approximation, 

which allows wavefunctions of t h e  s t a t e s  of t h e  s o l i d  t o  be separated i n t o  
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an  e l ec t ron ic  and a nuclear pa r t , 30  is not applicable t o  t h e  hybridized 

s t a t e s  of t he  s i l v e r  ha l ides .  

s epa ra t e  e l ec t ron  and phonon s t a t e s  of t h e  s o l i d  whose in t e rac t ion  can 

be t r e a t e d  by per turba t ion  theory. 

t he  f ind ing  t h a t  t he  changes i n  the  s i l v e r  ha l ide  photoemission FDCs 

with temperature v a r i a t i o n  cannot be t r e a t e d  simply by phonon absorption 

or emission of t he  photoexcited e l ec t ron  ( sec t ion  A, p a r t  2 above). 

This implies t h a t  one cannot consider 

This is, of course, consis tent  with 

O f  a l l  t h e  processes discussed above, t h e  observed s i l v e r  ha l ide  

EDC changes can only be explained by a temperature dependent dynamic 

hybridizat ion of t he  e l ec t ron ic  states. For t h i s  reason, t he  changes 

uFon cooling observed i n  the  EDCs of many types of sol ids ,  which are  t o  

be discussed i n  sec t ion  C:, w i l l  be examined pr imar i ly  i n  terms of  t h i s  

mode 1 e 

C. Survey of Temperature Dependent Measurements of Photoemission 

EDCs - 
There have been very few repor t s  of  temperature dependent EDC 

changes i n  the  l i t e r a t u r e .  This i s  because t h e  s a l i e n t  fea tures  of the  

EDCs f o r  most s o l i d s  change only s l i g h t l y  (the order of 

cooling t o  LN temperature. The changes observed f o r  Ge by Donovan are  

k , T  B ) upon 

2 
A s  seen i n  Fig. 2.1, the  l a r g e s t  change is the  s l i g h t  sharp- 

ening of t he  peak at E = 7.7 eV ( a l l  energies,  E , are  r e fe r r ed  t o  

the  highest  occupied e l ec t ron ic  s t a t e ) .  

comparing t h e  heights  of curves,which a re  normalized r e l a t i v e  t o  t he  

incident  r a t h e r  than the  absorbed photon f lux,s ince changes i n  the  

o p t i c a l  p roper t ies  may be s ign i f i can t  and have not been accounted for. 

Caution should be taken i n  

Ge is  c h a r a c t e r i s t i c  of so l id s  which have Debye temperatures, OD > 
near room temperature and have t h e i r  wavefunctions extended i n  space. 

Other examples of mater ia l s  with highly covalent bonding which f i t  in to  

t h i s  c l a s s  include GaAs and GaSb, These two compounds a l so  do not exh ib i t  

l a rge  changes q o n  cooling t o  77°K.32 
scheme, it a l s o  fa l l s  i n t o  the  c l a s s  of s o l i d s  with reasonably low 

(342OK) and extended wavefunctions e 

ments at LN2 temperature by Smith ind ica te  t h a t  the low temperature EDCs 

Though Cu has a d i f f e ren t  bonding 

OD 
Preliminary Cu photoemission measure- 

2 1  
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FIGURE 2.1. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc iden t  photon2 f o r  e l e c t r o n s  
photoemit ted from Ge at 77 and 293 K f o r  a photon 
energy of 10.2 eV from t h e  work of T.H. Donovan 
( r e fe rence  31). 

are not s i g n i f i c a n t l y  d i f f e r e n t  from those  a t  room t e m p e r a t ~ r e . ~ ~  

i n t e r e s t i n g  to note t h a t  Cu has considerable hybr id i za t ion  (s-p 

It is  

bands 

wi th  d s t a t e s ) .  Because the wavefunctions a r e  s o  extended, t h i s  

hybr id i za t ion  w i l l  not change much w i t h  temperature. I n  f ac t ,  t h i s  

hybr id i za t ion  causes only s m a l l  changes i n  the  energy bands ( i e e e y  opens 

small gaps) and does not involve many states. 34 
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i s  s t i l l  
OD 

It i s  very i n t e r e s t i n g  t o  consider  now a case where 

low bu t  t h e  wavefunctions a re  loca l i zed ,  The a l k a l i  ha l ides  a re  a good 

example of such a case ,  The changes observed f o r  L i I ,  measured by 

DiStefano, a r e  shown i n  Fig. 2 ,2 .  2 

FIGURE 2.2 Comparison of un-normalized energy d i s t r i b u t i o n s  f o r  
e l ec t rons  photoemitted from L i I  at 77 and 2B°K f o r  a 
photon energy of 1102 e V  from the  work of T.H. DiStefano 

( re ference  2 )  a 



The he ights  of t hese  curves a re  not s i g n i f i c a n t  s ince  t h e  s c a l e  f a c t o r s  

were chosen a r b i t r a r i l y  t o  f a c i l i t a t e  comparison. 

again a re  extremely s m a l l  as ind ica ted  by t h e  changes i n  t h e  s t r u c t u r e  

a t  -1.4 and - 0 ~ 6  eV. 

l o c a l i z e d  and t h e r e  is  very l i t t l e ,  if any, wavefunction hybridizat ion.  

This po in t  w i l l  be discussed i n  d e t a i l  i n  Chapter 111. 

i n t e r e s t i n g  t h a t  even though t h e  electron-phonon coupling is l a r g e  i n  t h e  

a l k a l i  ha l ides ,  t h e  EDC changes a re  of t h e  order  of ST C s I  has a l s o  
been s tud ied  at room and LN2 temperatures by EiStefanoeZ 

changes f o r  t h i s  compound a re  comparable t o  t h e  small e f f e c t s  descr ibed 

f o r  L i I  above f o r  a l l  bu t  one p a r t i c u l a r  p iece  of s t ructure . .  

ture dependence of t h e  lead ing  C s I  EDC peak above htr = 10.5 eV is 
roughly comparable t o  some o f  t h e  s i l v e r  ha l ide  s t r u c t u r e .  This may be 

an ind ica t ion  of a s i g n i f i c a n t  hybr id iza t ion  f o r  t h e  corresponding i n i -  

tial e l e c t r o n i c  states. From these  examples of d i f f e r e n t  types of s o l i d s  

(semiconductors, metals, and in su la to r s ) ,  a l l  wi th  low Debye temperatures, 

it is c l e a r  t h a t  a Debye temperature i n  o r  near t h e  region of temperature 

v a r i a t i o n  is not a s u f f i c i e n t  condi t ion f o r  observing l a r g e  temperature 

e f f e c t s  on e x t e r n a l  photoemission. 

Note t h a t  t h e  changes 

The wavefunctions i n  t h i s  case a re  very highly 

It is p a r t i c u l a r l y  

The observed 

The tempera- 

This condi t ion  may be necessary, however. L e t  us consider another 

c l a s s  of s o l i d s  wi th  l o c a l i z e d  valence e l e c t r o n i c  wavefunctions as before, 

and i n  add i t ion  wi th  a s i g n i f i c a n t  amount of hybridizat ion.  

good example of ma te r i a l s  i n  t h i s  c l a s s  which have Debye temperatures 

much h igher  than previous ly  considered. 

uppermost O2 (2p) 

f i l l e d  V (3d) s t a t e s .  The EDCs f o r  ces i a t ed  V 0 taken by Derbenwick 

are shown i n  Fig.  2.3. As i n  t h e  examples discussed above, t h e r e  a re  

only s l i g h t  changes upon cooling. 

V408 is a 

A s  Derbenwick determined, 35 t h e  

s t a t e s  appear t o  have mixed s i g n i f i c a n t l y  wi th  t h e  
35 

4 3  

The g r e a t e s t  e f f e c t  is seen as  a sharp- 

VR = 3.7 v o l t s  e SrTiO has a l so  3 ening of a shoulder i n t o  a peak a t  

been s tud ied  by Derbenwick and s i m i l a r l y  shows only s l i g h t  changes with 

temperature variation.35 

same c l a s s  as t h e  t r a n s i t i o n  metal  oxides.  

dependent EDCs f o r  metal-free phthalocyanine, ~ P c ,  as measured by 

Schechtman are  i l l u s t r a t e d .  

Molecular s o l i d s  a l s o  probably f i t  i n t o  the  

I n  Fig.  2k7  t he  temperature 

36 I n  t h i s  case7 t h e  EDC changes s l i g h t l y  again 
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FIGURE 2.3. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) f o r  e l ec t rogs  
photoemitted from c e s i a t e d  V 0 a t  77 and 255 K 
f o r  a photon energy of 10.2 ek %om the work of 
G I F o  Derbenwick ( re ference  35) e 

and even seems t o  broaden a b i t  upon cooling. 

a s t r a i n i n g  of t h e  t h i n  film qpon cool ing (see Chapter IV f o r  a discus-  

s i o n  of s t r a i n  e f f e c t s  on photoemission). 

copper phthalocyanine, CuPc, photoemission a t  room and LN temperatures 

and found i ts  EDCs were r e l a t i v e l y  i n s e n s i t i v e  t o  cooling?37 Thus, the  

occurrence of l o c a l i z e d  wavefunctions which a re  s i g n i f i c a n t l y  hybridized 

This may be ind ica t ive  of 

Schechtman a l s o  measured 



E) 
ELECTRON ENERGY, E (cV) 

F I G W  2.4. Comparison of un-normalized energy d i s t r i b u t i o n s  for 
e lec t rons  photoemitted from H2Pc at 120 and 2 5 8 O K  
f o r  a photon energy of 10.2 eV from the work of 
B.H. Schechtman (reference 36) e 

is  not s u f f i c i e n t  t o  cause a l a r g e  temperature dependent photoemission 

but  a Debye temperature i n  t h e  region of temperature v a r i a t i o n  may a lso  

be necessary.  

If w e  consiher  lowering t h e  Debye temperature while maintaining 

t h e  loca l ized ,  hybridized wavefunction c r i t e r i o n  of t h e  previous case, 

then  we have t h e  c h a r a c t e r i s t i c s  of t h e  Ag ha l ides .  I n  Fig. 2.5, t h e  

temperature dependence of t h e  AgBr EDC a t  10.2 e V  is  i l l u s t r a t e d  as 

an examplee Note t h a t  t h e  Debye temperature (144'K) is about midway 

between t h e  -limits of temperature va r i a t ion .  

data, presented above, photoemission from t h e  s i l v e r  ha l ides  changes 

qu i t e  dramat ica l ly  upon cooling. 

I n  sharp con t r a s t  t o  t he  

The g r e a t e r  than  0.3 e V  change upon 
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FIGURE 2 *5. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  i nc iden t  photon) f o r  e l e c t r o n s  
photoemitted from AgBr at 80 and 2S0K for a 
photon energy of 10.2 eV. 

cool ing  i n  t h e  full width of t h e  c e n t r a l  peak a t  9O$ of i t s  maximum 
he ight  i n  Fig. 2.5 is  an o rde r  of magnitude l a r g e r  than  t h e  changes i n  

photoemission from o t h e r  s o l i d s  s tud ied  t o  da t e .  Note how room 

temperature shoulders a r e  resolved i n t o  wel l -def ined peaks at 80'K. 
Such sharpening a l s o  occurs f o r  

i n  t h e  lower h a l f  of Fig.  2.6. 
AgCl as i s  seen i n  t h e  10.4 eV EDCs 

A s  can be  seen i n  t h i s  figure, these  



1 
1 

FIGURE 2.6. Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photon 
and AgCl a t  80 through 287 K f o r  photon energies  of 10.2 and 10.4 eV 
respec t ive ly .  

f o r  e l ec t rons  photoemitted from AgBr b 
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changes occur gradual ly  as t h e  temperature i s  va r i edo  As w i l l  be shown 

i n  Chapters V I  and VII, t hese  s t rong  temperature e f f e c t s  a re  seen only 

f o r  c e r t a i n  t r a n s i t i o n s  depending on t h e  na ture  of t h e  e l e c t r o n i c  s t a t e s  

between which t h e  t r a n s i t i o n  is being made. The f a c t  t h a t  these  e f f e c t s  

do not occur f o r  t h e  vas t  major i ty  of a l k a l i  ha l ide  EDC s t r u c t u r e  

measured t o  date,  even though both  of these  ha l ide  f ami l i e s  exh ib i t  

s t rong  electron-phonon coupling e f f e c t s  i n  t h e i r  o p t i c a l  p roper t ies ,  

argues t h a t  t hese  s t rong  temperature dependent photoemission changes 

a re  caused by a mechanism fundamentally d i f f e r e n t  from a n o m 1  s t rong  

electron-phonon e f f e c t .  

The only phys ica l  process  which r a t i o n a l i z e s  dl t h e  da t a  presented 

above is  a temperature dependent dynamic hybr id iza t ion  of t h e  e l e c t r o n i c  

wavefunctions. 

observed i n  such a l a r g e  v a r i e t y  of s o l i d s  be reconci led with the  occur- 

rence and magnitude of t h e  s t r i k i n g  changes i n  some of t h e  s i lver  ha l ide  

EDC data .  Thus, it appears t h a t  t h e  c h a r a c t e r i s t i c s  of t h e  s i l v e r  ha l ides  

which are necessary, and poss ib ly  s u f f i c i e n t ,  t o  have such l a rge  tempera- 

t u r e  dependent photoemission a r e  

of  temperature va r i a t ion ,  

( a )  f a i r l y  l o c a l i z e d  on t h e  atomic sites, and (b) of two compatible 

spec ie s  i n  c lose  enough proximity i n  energy f o r  t h e  r e s u l t i n g  hybridiza- 

t i o n  t o  be a s i g n i f i c a n t  po r t ion  of t h e  mixed s t a t e ' s  energy, and 

(3)  a l a r g e  enough amplitude of i on ic  v i b r a t i o n  above the  Debye tempera- 
ture t o  cause a s i g n i f i c a n t  modulation of t h e  wavefunction hybridizat ion.  

Only i n  t h i s  way can t h e  very small  temperature e f f e c t s  

(1) a Debye temperature i n  the  region 

( 2 )  e l e c t r o n i c  wavefunctions which are:  

I n  t h i s  s e c t i o n  we have not considered t h e  temperature dependent 

change i n  t h e  photoemission y i e ld .  This was done because these changes 

a re  not p a r t i c u l a r l y  revea l ing  as t o  t h e  phys ica l  process causing them. 

The information i n  the  energy d i s t r i b u t i o n  of t h e  photoelectrons emitted 

at a given hV is many times g r e a t e r  than t h a t  obtained from knowing 

t h e  t o t a l  number of e l ec t rons  photoemitted (ice., the  quantum y i e l d ) .  

Changes i n  y i e l d  a re  sometimes i n s i g n i f i c a n t  compared t o  changes i n  the  

EDCs. I n  f a c t ,  t he  changes i n  y i e l d  can even be deceivingo For example, 

t h e  y i e l d  may decrease not iceably while t h e  EDC s t r u c t u r e  sharpens con- 

s ide rab ly  as i s  t h e  case f o r  t h e  AgBr EDCs presented i n  Fig. 2.5. On 



t h e  o the r  hand, t h e  quantum y i e l d  of Ge measured by Donovan decreases 

s u b s t a n t i a l l y  upon cooling, bu t  as seen i n  Fig.  2 . 1  t he  corresponding 

EDCs show only s l i g h t  s t r u c t u r e  changes. Thus, even though t h e  tempera- 

t u r e  dependence of photoyield has been s tud ied  much more ex tens ive ly  

than  t h a t  of EDCs, it is  not of primary i n t e r e s t  i n  t h i s  discussion,  
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111. THE ELECTRONIC STATES AND OPTICAL TRANSITIONS 

I N  THE SILVER HALIDES 

Prope r t i e s  of t h e  s i l v e r  h a l i d e s  which a re  re levant  t o  t h i s  d i s -  

cussion a re  reviewed i n  t h i s  chapter .  This includes a d i scuss ion  of 

t h e  s t a t e  of  t h e  knowledge of t h e  e l e c t r o n i c  s t a t e s  of t h e  s i l v e r  

h a l i d e s  previous t o  t h i s  inves t iga t ion ,  atid a review of past photo- 

emission s t u d i e s .  I n  addition, t h e  o p t i c a l  p rope r t i e s  are examined i n  

terms of t h e i r  t eqpera ture  dependence and t h e  information which they 

y i e l d  concerning t h e  e l e c t r o n i c  s t a t e s .  Comparison t o  t h e  a l k a l i  ha l ides  

is  made throughout t h e  chapter  t o  emphasize t h e  key r o l e  t h e  

p mixing p lays .  

Ag d-halogen 

A. Elec t ron ic  S t a t e s  

The e l e c t r o n i c  s t a t e s  of  t h i s  i n t e r e s t i n g  c l a s s  of noble ha l ide  

i n s u l a t o r s  d i f f e r  i n  a fundamental way from those o f  t h e  c l a s s i c  wide 

band gap in su la to r s ,  t h e  a l k a l i  ha l ides .  It is t h e  d i f fe rences  between 

t h e  m e t a l l i c  cons t i t uen t s  which causes t h i s .  The noble and a l k a l i  metal  

i n  t h e  same row of t h e  pe r iod ic  t a b l e  have t h e  same i n e r t  gas core and 

valence e l e c t r o n  l e v e l .  The d i f f e rence  is t h a t  t h e  lowest d s t a t e s ,  

ou ts ide  the  core, a r e  occupied i n  the  noble metal  while they  a re  empty 

i n  t h e  a l k a l i  case.  This means t h a t  t h e  valence s t a t e s  of t he  noble 

ha l ides  w i l l  be a "mixture" of t h e  f i l l e d  d s t a t e s  of t h e  metal  ion  

and t h e  occupied p s t a t e s  of t h e  halogen ion.  I n  comparison, t h e  

a l k a l i  ha l ide  valence band w i l l  be formed simply from one atomic cons t i -  

t uen t .  This i s  i l l u s t r a t e d  i n  Fig. 3.1 by t h e  approximate atomic o r i g i n  

of regions of t h e  e l e c t r o n i c  s t r u c t u r e  of a t y p i c a l  a l k a l i  halide,  RbI, 
2 

from t h e  work of DiStefano, and a t y p i c a l  s i l v e r  halide,  AgBr , from 

t h i s  work. The photoemission thresholds  a re  a l so  shown i n  t h i s  f i g u r e  

by t h e  l i n e s  on t h e  r i g h t  s ide  of each of t h e  energy diagrams. The 

valence band s t r u c t u r e  of R b I  i s  r e l a t i v e l y  simple s ince  t o  a very 

good approximation, one can consider  only one s e t  of atomic s t a t e s  



FIGURE 3.1. Comparison of t h e  e l e c t r o n i c  states of a t y p i c a l  
a l k a l i  hal ide,  RbI , and s i l v e r  hal ide,  AgBr e 

The RbI s t a t e s  are from t h e  work of' To H. DiStefano 
( re ference  2 )  , 

[ i .e . ,  I ( 5 p ) l .  On t h e  o the r  hand, t he  Br(4p) and Ag(4d) s t a t e s  l i e  

almost a t  t he  same energy, This l eads  t o  very s t rong  mixing and a l a r g e  

hybr id iza t ion  of t he  valence wavefunctions i n  t h e  solid, as discussed i n  

Chapter 11. Thus, t h e  valence band will be qu i t e  complex i n  t h e  s i l v e r  

ha l ides  e 
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To understand t h e  complexities of t h i s  e l e c t r o n i c  s t r u c t u r e  and 

the r e l a t i v e  importance of t he  halogen p - s i lve r  d mixing, t h e  valence 

states of A g C l  were ca l cu la t ed  using t h e  t igh t -b inding  approximation 

discussed i n  t h e  last  chapter .  The t igh t -b inding  matrix elements were 

obtained us ing  t h e  Slater-Koster  method.3’ Though t h e  matr ix  elements 

a re  given only f o r  t h e  simple cubic  l a t t i c e  i n  Table I11 of t h i s  paper, 

t h e  terms f o r  t h e  cubic (NaC1)  s t ruc tu re ,  3 , can be der ived from them. 

Since our i n t e r e s t  here is  i n  determining t h e  importance of t he  var ious 

cont r ibu t ions  t o  t h e  energy i n  Eq. (2.10) and i n  p a r t i c u l a r  the  e f f e c t  

of t h e  wavefunction hybr id iza t ion  on t h e  s t a t e s ,  ca l cu la t ions  of t h e  

energ ies  at and L alone a r e  s u f f i c i e n t .  The Hamiltonian matrix 

elements along t h e  l i n e  r -, A -, L f o r  f i rs t  and second neares t  neigh- 

bors, i n  t h e  two-center approximation, are given i n  Table 111.1. I n  

our ca l cu la t ions ,  t h e  secu la r  equat ion is a 9 X 9 determinant whose basis 

func t ions  are the one C1 3s o r b i t a l  (s), t h r e e  C1 3p s t a t e s  (x,y,z), 

and t h e  f i v e  Ag 4d s t a t e s  (xy,yz,zx, x -y , 32 -r ). (Note t ha t  by 

neglec t ing  t h e  spin,  t h e  matr ix  s i z e  i s  reduced by a f a c t o r  of 2.)  

numerical values  used f o r  t he  parameters i n  t h e  matr ix  elements (e.g., 
pda) were those determined by Bassani, Knox, and Fowler f o r  t he  assumption 

t h a t  only t h e  neares t  neighbor i n t e r a c t i o n s  were important.’ 

dependence of t hese  matr ix  elements is  contained i n  as indica ted  at 

the  bottom of t h e  t a b l e .  

mined by so lv ing  f o r  the eigenvalues of t h i s  matrix.  

t i o n  was accomplished us ing  a computer program w r i t t e n  by J. Rinzel and 

R. E. Funderl ic  of Union Carbide Co., Oak Ridge, Tennessee and suppl ied 

t o  t h e  author by G. F. Derbenwick. The r e s u l t s  are  summarized i n  

Fig. 3.2 where t h e  magnitudes of each of t h e  cont r ibu t ions  t o  t h e  energy 

of Eq. (2.10) a re  shown. The des igna t ions  of t he  s t a t e s  a r e  found by 

determining the  i r r educ ib l e  r ep resen ta t ion  of t h e  group 3 by which 

the eigenfunction, corresponding to a given eigenvalue, transforms. 

This is  done us ing  s tandard group t h e o r e t i c a l  techniques.  

2 2  2 2  

The 

The k- 

The k-dependent terms i n  Eq. (2.10) were de t e r -  

The diagonaliza- 

39940 
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( 0 )  ( b )  ( C  1 ( d )  ( e )  

I ON NORMALIZATION TWO-CENTER 
ADELUMG CRYSTAL 

FIELD 

I 

FIGURE 3 2. 
T' and t h e  

The con t r ibu t ions  t o  t h e  valence band s t r u c t u r e  of A g C l  at 
h ighes t  valence s t a t e  a t  L ca l cu la t ed  by t h e  t igh t -b inding  

approximation: (a) f r e e  ion  energy, cn ; t o  which we add (b) t h e  
Madelung energy, En then  (e)  t h e  wavefunction normalization cor- 
rec t ion ,  Sk , ed for; followed by t h e  tu rn ing  on of 
(a) t h e  c r y s t a l  f i & ~ c ~ ~ y 7  , of  t h e  neighbors; and f i n a l l y  ( e )  t he  
two-center wavefunction overlap, U i 2 h  , is  included. The energ ies  
of t h e  s t a t e s ,  r e f e r r e d  t o  t h e  valen&e band maximum, a r e  shown i n  

ren theses  i n  p a r t  ( e )  
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I n  p a r t  (a )  of t h e  f igu re ,  t h e  f r e e  ion energies,  E we n 
, i n  (b), t h e  C1 3p- En p l o t t e d .  

der ived s t a t e s  l i e  very c lose  i n  energy t o  t h e  

A s  can be seen, t h i s  is by far t h e  l a r g e s t  cont r ibu t ion  t o  t h e  energy 

s t a t e s  of AgCl ; while the  o ther  terms s i g n i f i c a n t l y  a f f e c t  t h e  rela- 

t i v e  p o s i t i o n  of t h e  var ious l e v e l s  t h a t  are i n  c lose  proximity, on a 

l a r g e  s c a l e  the  p o s i t i o n s  of the  s t a t e s  a re  p r e t t y  well de t emined  by 

t h e  f ree- ion  and Madelung terms. The C1 3s-derived s t a t e s  are around 

14 e V  lower i n  energy than  t h e  p and d der ived states and can be 

Upon adding the Madelung energy, 

Ag 46-derived l e v e l s o  

neglected i n  consider ing wavefunction mixing and in t e rp re t ing  t h e  EDCs 
of these  s o l i d s .  To s tudy the  o the r  cont r ibu t ions  t o  these  highest  

valence s t a t e s  i n  more d e t a i l ,  t h i s  region of t h e  f i g u r e  is expanded i n  

Fig. 3.3. 
t h e  Ag kd-derived states are  drawn dashed. 

The C1 3p-derived s t a t e s  are shwon by the s o l i d  l ine  while 

When t h e  normalization, 
S , is  taken i n t o  account i n  (c) ,  it appears t h a t  t h e  d-derived 

s t a t e s  a t  T' a re  higher  i n  energy than  t h e  p-derived r o r b i t a l s .  

It is  i n t e r e s t i n g  t o  note t h a t  t h i s  cont r ibu t ion  which involves overlap 

between the  wavefunctions of t h e  two atomic spec ies  causes the  order of 

t he  l e v e l s  t o  reverse  at T' and produces the  l a r g e  separa t ion  between 

t h e  energies  of t h e  p-derived s t a t e  a t  r(r13) and the  highest  L 

po in t  (L3,) 

s h i f t s  a l l  t h e  s t a t e s  by roughly t h e  same mount  without producing any 

s i z a b l e  changes i n  t h e i r  r e l a t i v e  pos i t i ons .  The two-center overlap 

term, , which is turned on i n  (e) s h i f t s  t h e  p-derived s t a t e s  

r e l a t i v e  t o  t h e  d-derived ones thereby producing t h e  order ing of the 

bands which we deduce from these  photoemission r e s u l t s ,  as  w i l l  be 

explained i n  t h i s  t h e s i s .  

terms S and U which depend on t h e  p-d mixing have such 

profound inf luences on the energy states of t he  s i l v e r  ha l ides J  

should be r eca l l ed  t h a t  it is these same terms which are the  most 

dependent on temperature (see Chapter 11). 

various cont r ibu t ions  to t h e  energy is  such tha t  t h e  hybridized s t a t e s  

w i l l  be g r e a t l y  dependent on temperature due t o  t h e  dynamic motion of 

t he  l a t t i c e ,  

k, n 

The c r y s t a l  f i e l d  contr ibut ion,  UL1) , i n  (a), simply 

U (') 
k,n 

It is q u i t e  s i g n i f i c a n t  tha t  t he  overlap 

k9 n k9n 
It 

Thus, the  importance of t h e  

36 



- I  

\-------- -------- r;, (-3.3) \ r;2 f 
r;, 

FIGURE 3 .3 .  Expansion of  t he  valence band s t r u c t u r e  of A g C l  
presented i n  Fig. 3.2  showing the  valence s t a t e s  a t  
7‘ and the  highest  one a t  L which a re  derived 
from the  C1 3p (-) and Ag 4d (----) atomic 
o r b i t a l s .  The energ ies  of t h e  s t a t e s ,  r e f e r r ed  
t o  t h e  valence band maximum, a re  shown i n  paren- 
theses  i n  p a r t  ( e ) ,  

Because of t h e  c lose  proximity of t he  

halogen p-derived s t a t e s ,  t he  r e s u l t i n g  mixing is qu i t e  s t rong  and 

produces a complex valence band s t r u c t u r e .  

t o  be ca l cu la t ed  accura te ly  t o  even p r e d i c t  t he  proper order ing of 

t h e  l eve ls .  
t he  valence band maximum,  Se i tz ,  as e a r l y  as  1B1, suggested t h a t  the  

halogen p-derived s t a t e s  would be the  highest  f i l l e d  leve ls ,  having a 

m a x i m u m  away from the  B r i l l o u i n  zone center.41 Krumhansl noted tha t  

Ag,4d s t a t e s  and the  

The energies  would have 

Thus, t h e r e  has been disagreement over which s t a t e s  form 
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such behavior of t h e  bands could be due t o  t h e  c lose  proximity of ag 4d 
s t a t e s ,  42 

Brown formalized these  p red ic t ions  by proposing a set of 
valence bands which could expla in  the ava i lab le  s i l v e r  ha l ide  da ta ,  43 

On the o ther  hand, Martienssen suggested t h a t  the h ighes t  valence s t a t e s  

could be  Ag kd-derived and s t i l l  expla in  the long-wavelen&h t a i l  on the  

fundamental absorption,44 It was not u n t i l  1965 tha t  attempts were made 

t o  c a l c u l a t e  t h e  energy bands of AgCl and AgBr e Using t h e  Augmented 

Plane Wave (APW) method of S la t e r ,  Scop ca l cu la t ed  the valence bands and 

some conduction s t a t e s .  Though the lowest conduction band appears t o  

be too  wide and the d-band t o  h ighes t  f i l l e d  state energy is too  s m a l l ,  
two very important f ea tu re s  were determined by Scop's work, 

e s t  s i l v e r  ha l ide  valence s t a t e s  a re  p-derived and they have t h e i r  

maximum at a poin t  o the r  than the  center  of t h e  zone (r). Bassani, 

Know, and Fowler used the  t igh t -b inding  approximation t o  ca l cu la t e  the 

valence s t a t e s  of AgCl and then  estimate t h e  over-all band s t r u c t u r e s  

of AgCl and AgBr based on ava i l ab le  o p t i c a l  da t ae3  The important 

po in t  t o  r e a l i z e  is t h a t  even t h e i r  ca l cu la t ions  of the  A g C l  valence 

s t a t e s  were not accurate  enough t o  expla in  t h e  o p t i c a l  experiments. 

Rather, these  bands were adjusted i n  t h e  "speculat ive band s t ruc tu res"  

presented i n  t h e i r  paper.  

of bo th  experiment and theory, they a re  ac tua l ly  qui te  good and have been 

successfu l ly  appl ied t o  more recent  da ta .  For t h i s  reason, we compare 

these  bands with the  r e s u l t s  determined f o r  the e l ec t ron ic  s t a t e s  from 

t h e  present  work i n  Chapter V I I I .  

sented i n  F igso  3.2 and 3.3 were computed using t h e i r  inaccurate  ca lcu la-  

t i o n  parameters, t h e  L + energy presented above i s  understandably 

smaller  than  experimentally measured, bu t  these  ca lcu la t ions  serve as a 

good es t imate  of genera l  energy band f ea tu res .  

6 

The high- 

Since these  bands were proposed on t h e  b a s i s  

Since t h e  t igh t -b inding  energies  pre- 

3' 25' 

Their ca lcu la t ions  d id  

f u r t h e r  e s t a b l i s h  the  highest  f i l l e d  s t a t e s  as being p-derived and not 

occurr ing at I' e Thus, t h e  ove r -a l l  f ea tu re s  of t h e  energy bands have 

been ca lcu la ted  but the re  i s  much f u r t h e r  work which needs t o  be done t o  

ob ta in  any kind of  agreement w i t h  ex.periment. Fowler is  present ly  work- 

ing on a ca l cu la t ion  of t he  

method s i m i l a r  t o  that  developed by Kunz. 
AgCl band s t r u c t u r e  using a mixed-basis 

27 
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A l l  t hese  ca l cu la t ions  have e s t ab l i shed  t h e  g r e a t  s i m i l a r i t y  between 

t h e  AgBr and AgCl e l e c t r o n i c  s t ruc tu res .  It is thus a good approxi- 

mation t o  apply t h e  genera l  conclusions determined f o r  one compound t o  

t h e  o the r  h a l i d e o  

ledge of t hese  ma te r i a l s .  

l a t e  t h e  t igh t -b inding  valence bands f o r  AgCl , it i s  thus important 

t o  know t h a t  t h e  genera l  f ea tu re s  w i l l  a l s o  be common t o  AgBr 

This is o f t en  necessary because of the  l imi t ed  know- 

For example, s ince  we are  only able  t o  calcu- 

Be Q t i c a l  Proper t ies  

As noted i n  sec t ion  A, t h e  o p t i c a l  p rope r t i e s  of t he  s i l v e r  ha l ides  

have been ex tens ive ly  used i n  determining t h e  e l ec t ron ic  s t r u c t u r e  of 

t h e  s i l v e r  ha l ides .  The major e f f o r t  t o  da te  has been i n  t h e  extreme 

W (30 < hv < 240 eV),45 and v i s i b l e  and near W (htr < 6.7 eV) regions 

of t h e  spectrum. I n  these  regions t h e  o p t i c a l  constants have been 

determined q u i t e  we l l  from 300' t o  4.2'K. 

u l t r a v i o l e t  region which i s  of i n t e r e s t  t o  us, has only been explored 

s a t i s f a c t o r i l y  at room temperature by White and S t r a l ey .  This AgCl 

r e f l e c t i v i t y  d a t a  through 12.0 e V  is shown i n  Fig. 3.4 by t h e  s o l i d  l i n e  

except i n  t h e  region from 3.2 through 4.3 eV where t h e  po in t s  and not 

t h e  curve a re  the  da ta .  When these  o p t i c a l  measurements by White and 

S t r a l e y  a r e  compared47 with o t h e r  r e f l e c t i v i t y  

t h i s  region, they  a r e  c l e a r l y  seen t o  be  t h e  bes t  t o  date .  

cons tan ts  obtained by a Kramers-Krb'nig ana lys i s  of t h i s  r e f l e c t i v i t y  

exhib i ted  unphysical negative d ips  a t  3.2 eV i n  and K e The 

f i rs t  two of these  q u a n t i t i e s  a re  shown by t h e  dashed curves i n  

Figs.  3.5 and 3.6, r e spec t ive ly ,  

suppl ied by White,50 revea ls  a d i scon t inu i ty  i n  slope a t  3.2 eV and 

through 4,3 eV values  g r e a t e r  than the  underlying smooth "envelope" by 

up t o  11% ( see  Fig. 3.4) When t h e  White and S t r a l ey  r e f l e c t i v i t y  da t a  

from 3.3 e V  through 4,3 eV is smoothed t o  the  s o l i d  l i n e  shown i n  

Fig. 3.4, i n  accordance w i t h  e a r l i e r  measurements, 51-54 t h e  Kramers- 

KrGnig ana lys i s  yielded t h e  same s t r u c t u r e  as reported by White and 

Unfortunately, t h e  vacuum 

46 
49 or absorption49 da ta  i n  

The o p t i c a l  

A close inspect ion of t h e  s t a r t i n g  data,  which was generously 
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PHOTON ENERGY, hv (eV 1 

FIGURE 3.4, The s p e c t r a l  d i s t r i b u t i o n  of t he  re f lec tance  of AgCl a t  
2 B 0 K  from the  work o f  White and S t r a l e y  (reference 46). 
I n  t h e  region from 3.2 through 4.3 eV the  po in t s  and not 
t h e  curve a re  t h e i r  da ta .  

S t r a l e y  except f o r  t h e  complete absence of the  unphysical d tps  at 3.2 eV. 

A s  seen i n  Figs.  3.5 and 3.6, t he  magnitude of these  two s e t s  of o p t i c a l  

cons tan ts  d i f f e r  by less than  10%. 
i n  Appendix A. The same e r r o r  appears t o  be present  i n  White's unpub- 

l i s h e d  AgBr d a t a  as i s  evident from t h e  ca lcu la ted  absorption coef- 

f i c i e n t  presented i n  Fig. 3e7.55 The negative d ip  i n  a around 4 eV 

may be caused by poor r e f l e c t i v i t y  da t a  i n  t h i s  region. This was not 

Details of t h i s  ca l cu la t ion  a re  given 

s tudied  i n  d e t a i l  s ince  based on our AgCl f ind ings  t h e  o p t i c a l  constants  

determined with cor rec ted  input d a t a  would probably d i f f e r  only s l i g h t l y  
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p.0 

PHOTON ENERGY, hv (eV) 

FIGURE 3.5. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  absorpt ion 
c o e f f i c i e n t  of AgCl at 2B°K ca lcu la ted  from the  r e f l e c -  
tance of White and S t r a l e y  (reference 46) (- - -) and 
t h e  same values  b u t  smoothed from 3.2 through 4.3 eV (-) 

i n  magnitude at a l l  energ ies  o t h e r  than  t h e  region of t h e  unphysical d ip .  

The absorpt ion edge has been s tudied  i n  more d e t a i l  than  any o ther  

part of t he  spectrum. This is a t  l e a s t  i n  par t  because i t s  behavior is 

ind ica t ive  of i n d i r e c t  t r a n s  it ions and thus  yielded d i r e c t  evidence as 

t o  t h e  na ture  of t h e  e l e c t r o n i c  s t r u c t u r e  around t h e  band gapm There 

have been only minor d iscrepancies  i n  t h e  values  reported f o r  t h e  in- 

d i r e c t  th reshold  of both A g C l  and AgBr e These a re  summarized i n  

Table 111.2. The values  of Joes ten  and Brown57 a r e  probably t h e  most 

r e l i a b l e .  Because the  lowest conduction s t a t e s  derived from the  Ag 5s 
l e v e l s  a r e  qu i t e  simple i n  form ( f r ee -e l ec t ron  l i k e  wi th  a minimum a t -  r ) 9  

t h e  overwhelming evidence f o r  an i n d i r e c t  gap was c l e a r l y  ind ica t ive  of 
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FIGURE 3.6. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t he  
imaginary p a r t  of t h e  d i e l e c t r i c  constant  of 
A g C l  a t  2B°K ca lcu la t ed  from t h e  r e f l ec t ance  
of White and S t r a l e y  ( re ference  46)(- - -) 
and t h e  same values  b u t  smoothed from 3.2 
through 4.3 e V  (-) . 

a valence band with a m a x i m u m  at a p o i n t  o the r  t han  I? . This was 

conclusively shown t o  be t h e  case f o r  AgBr by t h e  piezotransmission 

s t u d i e s  of A ~ c a r e l 1 i . l ~  

t h e  (111) (L) d i r e c t i o n .  Since t h e  m a x i m u m  would be a t  r i f  t h e r e  

He found t h a t  t h e  valence band m a x i m u m  was i n  
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Reference 

FIGURE 3.7. The s p e c t r a l  d i s t r i b u t i o n s o f  t h e  r e f l ec t ance  and 
absorpt ion c o e f f i c i e n t  of AgBr at 2 B ° K  from t he  
work of White ( re ference  5 5 ) .  

TABLE 111.2. Values repor ted  f o r  t h e  ind i r ec t  th reshold  
of A g C l  and A g B r  a t  4.2OK 
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were not p-d coupling,26 these  o p t i c a l  s t u d i e s  of t he  ( i n d i r e c t )  

absorpt ion edge e s t ab l i shed  the  profound importance of t h i s  mixing. 

This th reshold  absorpt ion region has been measured from 2 t o  300°Ko 

It is q u i t e  i n t e r e s t i n g  t h a t  t h e  well-defined f i n e  s t r u c t u r e  i n  t h e  

absorpt ion edge is "washed out" above approximately 17 K ( i e e e ,  f o r  

T > zpproximately 0.1 o ) 56'57y60761 This is a very s t rong  dependence 

on temperature; when t h e  temperature ge ts  high enough t o  cause any 

v i b r a t i o n  of t h e  l a t t i c e  ( a t  

energy is broadened. 

t i c e  i n  determining t h e  o p t i c a l  p rope r t i e s  of t h e  s i l v e r  halides is 

cons i s t en t  with t h e  dynamic wavefunction hybr id iza t ion  model discussed 

i n  Chapter 11. It is  a l s o  i n t e r e s t i n g  t h a t  the  cyclotron resonance of 

AgBr i s  "washed out" i n  the  same temperature range. 

0 

D 

T = 0.1 OD ), t h e  o p t i c a l  t r a n s i t i o n  

This importance of t h e  thermal motion of t he  l a t -  

62 

T h i s  s t rong  temperature dependence of t he  o p t i c a l  p rope r t i e s  is even 

more s t r i k i n g l y  evident  i n  t h e  s tud ie s  of t h e  d i r e c t  t r a n s i t i o n  edge. 

I n  Fig,  3.8, t h e  absorpt ion measurements of AgBr by Okamoto51 are  

presented.  

t o  be v i r t u a l l y  the  same. It is qu i t e  dramatic how t h e  very sharp 

s t r u c t u r e  i n  a a t  90°K i s  almost completely "smoothed" when AgBr i s  

warmed t o  room t e q e r a t u r e .  Note e spec ia l ly  the  f irst  exci ton peak which 

is broadened i n t o  a s l i g h t  shoulder ,  It is qu i t e  s i g n i f i c a n t  t h a t  even 

thraugh s t r u c t u r e  i n  t h e  o p t i c a l  pro'perties of t h e  a l k a l i  ha l ides  is 
s l i g h t l y  diminished i n  s t r eng th  and a b i t  broadened at room temperature, 

peaks and even some f i n e  s t r u c t u r e  which is present  a t  l i q u i d  

temperature is preserved a t  300 K. This can be seen i n  the  i n s e r t  i n  

Fig-  3.8 where t h e  r e f l e c t i v i t y  of  RbBr by Bald in i  and Bosacchi63 is  

shown. 

t rends  can be elucidated.)  

at 5 5 O K  at about 7.8 eV is  r e t a ined  i n  the 300°K spectrum. 

ference i n  behavior w i t h  T between these  two bromides, which have 

about t h e  same Debye temperatures, is  e spec ia l ly  s i g n i f i c a n t  s ince  t h e  

only d i f f e rence  i n  e l e c t r o n i c  s t r u c t u r e  i s  t h a t  t h e  

unoccupied i n  t h e  a l k a l i  ha l ide .  This  importance of t he  f i l l e d  d 

These have r ecen t ly  been remeasured by Car re r2 '  and found 

N2 
0 

(Though t h e  r e f l ec t ance  is  not comparable t o  t h e  absorption, 

Note t h a t  even t h e  f i n e  s t r u c t u r e  present  

This d i f -  

4d s t a t e s  a re  
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FIGURE 3.8. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  absorp- 
t i o n  c o e f f i c i e n t  of AgBr a t  90 and 293'K from t h e  
work of Okamoto ( re ference  51) and of RbBr at 55 
and 300°K from t h e  work of Ba ld in i  and Bosacchi 
( re ference  63) . 

51 s t a t e s  i n  t h e  s i l v e r  h a l i d e s  is a l s o  seen by copparing t h e  A g C l  

and R b C l  963 s p e c t r a  i n  Fig. 3.9. 
of t h e  p-d c o q l i n g  i n  t h e  s i l v e r  h a l i d e s  is cons i s t en t  wi th  t h e  

dynamic wavefunction hybr id i za t ion  model pruposed i n  Chapter 11. One 

would expect t h i s  f irst  d i r e c t  exc i ton  peak t o  not only be dependent on 

temperature but a l s o  on p res su re  i n  such a model. This  is because t h e  

p re s su re  reduces t h e  i n t e r - i o n i c  spacing which r e s u l t s  i n  a " s t a t i c "  

change i n  t h e  p-d  mixing. Such a p res su re  dependence of t h e  absorp- 

t i o n  has been measured by Aust 

d i c t  t h e  amount of broadening which can be expected f o r  a hybridized 

s t a t e  due t o  t h e  v i b r a t i o n s  of t h e  l a t t i c e .  When t h e  exc i ton  binding 

energy is  taken i n t o  account, t h i s  peak i n  t h e  absorption is  a d i r e c t  

The Epparent fundamental Wportance 

4 and w i l l  be used i n  Chapter V t o  pre-  
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FIGURE 3.9. Coqparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of thg 
absorpt ion c o e f f i c i e n t  of AgCl at 90 and 293 K 
from t h e  work of Okamoto (reference 51) and of 
R b C l  
Bosacchi ( reference 63). 

at 55 and 300°K from t h e  work of Baldini  and 

measure of t h e  fundamental band gap. 

estimated t o  date  are summarized i n  Table 111.3. 

A l ist  of t h e  most r e l i a b l e  values 

TABLE 111.3. Values reported f o r  t h e  d i r e c t  threshold of 
AgCl and AgBr at t h e  ind ica ted  temperatures. 
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The recent  values  of a re  the  most r e l i a b l e .  The d i f -  

ference between t h e  d i r e c t  (Table 111.3) and ind i r ec t  (Table 111.2) 

th resholds  is a quan t i t a t ive  measure of t h e  mount  of upward bending of 

t h e  highest  valence band from t o  t h e  maximum at  L s ince  both gaps 

a re  measured r e l a t i v e  t o  t h e  same conduction band s t a t e ,  rl e Since 

t h i s  upward bending from I- is due e n t i r e l y  t o  t h e  halogen p - s i lve r  d 

coupling, 

the energy of t h e  mixed s t a t e s  by seve ra l  eV. 

and 1.601 k 0.002 e V  i n  

condi t ion.  

pure p-band.) 

26 t h e  o p t i c a l  da t a  shows t h a t  the hybr id iza t ion  inf luences 

(1.90 k 0.05 e V  i n  AgCl 

AgBr axe measured upward from a "flat-band' '  

One expects at l e a s t  an equivalent  downward bending for a 

This is cons is ten t  with t h e  conclusions of t h e  t i g h t -  

binding ca l cu la t ion  discussed i n  sec t ion  A ( see  Fig. 3.3). 

C. Photoemission 

There has been a f a i r l y  l a r g e  amount of work on the  photoemission 

quantum y i e l d  from t h e  s i l v e r  ha l ides  ( re ferences  669 67, 49, 69, 69, 
TO9 71, 41, 72, 73, 74). I n  addition, s t u d i e s  of  photoemission from 

s i l v e r  i n t o  t h e  s i l v e r  ha l ides  has a l s o  been the  subjec t  of invest iga-  

t i o n E 9  76 because of i t s  importance i n  t h e  photographic process  There 

has only been one previous attempt a t  measuring photoemission energy 

d i s t r i b u t i o n s  from t h e  s i l v e r  halides4' and as w i l l  be shown, these  a re  

not r ep resen ta t ive  of p rope r t i e s  of t h i s  c l a s s  of s o l i d s ,  We w i l l  not 

attempt a comprehensive d iscuss  ion of each of these  inves t iga t ions  but  

w i l l  r a t h e r  choose r ep resen ta t ive  examples of t he  e a r l i e r  work t o  i l l u s -  

t ra te  t h e i r  shortcomings and t h e  reasons f o r  them, The references given 

above w i l l  serve as a bibl iography on t h e  subjec t .  

previous work of Peterson, '' T a f t ,  Phili,pp, and Apker, 70 and Fleischmann 

is  made i n  F ige  3.10, Each of these  measurements s a t u r a t e s  at a y i e l d  

of around 8% e lec t rons  pe r  inc ident  photon. 

occur i n  t h e  threshold region. The previously reported y i e lds  exh ib i t  

th resholds  which a re  more than 1 eV lower than  the  value measured i n  

these  s tud ie s  and t h e  r a t e  of decrease of the y i e l d  t o  lower ht' 

( i e e e 9  s lope)  i n  t h i s  range is l e s s  f o r  t h e  o ther  works. The most 

A comparison of AgBr y i e l d  measured i n  t h i s  study and se lec ted  
74 

The i n t e r e s t i n g  d i f fe rences  
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FIGURE 3.10. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  of 
e l e c t r o n s  photoemitted p e r  inc ident  photon from AgBr at 2 S 0 K  from 
t h i s  work and t h e  works of Pe terson  ( re ference  77)9 Taft, Philipp, 
and Apker ( r e fe rence  T O ) ?  and Fleischmann ( re ference  74) 
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s i g n i f i c a n t  d i f f e r e n c e  of our s tudy  from t h e  o the r s  is t h a t  our samples 
were prepared i n  vacuum i n  t h e  same apparatus which was used for t h e  

photoemission measurements. They were thus measured i n  s i t u  and had 

c l e a n  su r faces ,  

works was c l e a r l y  poorer  because they  were prepared e x t e r n a l  t o  t h e  

measurement apparatus w i t h  no f u r t h e r  c leaning  a f t e r  being mounted i n  

t h i s  vacuum chamber. I n  t h i s  e n t i r e  procedure, "no s p e c i a l  p recaut ions  

with t h e  sur face  were taken". The experience from t h e  work done i n  

our l abora to ry  shows t h a t  t h e  condi t ion  of the  sur face  can have profound 

e f f e c t s  on t h e  e x t e r n a l  photoemission from a sample. The e f f e c t  of 

su r f ace  contamination is i n  gene ra l  t o  cause a lower threshold  and an 

energy d i s t r i b u t i o n  which has a Gaussian-like shape f o r  a l l  photon 

energ ies  (i.e ., "universa l  curve") The measurements of t h e  y i e l d  by 

Taft, e t  al,,70 g ive  ind ica t ions  t h a t  t h e  lower y i e l d  threshold  of AgBr 
is not r ep resen ta t ive  of t h e  bulk  p rope r t i e s  of t h e  s o l i d  b u t  r a t h e r  due 

t o  su r face  condi t ions .  These workers found tha t  t h i n  f i l m  samples pre- 

pared i n  evacuated phototubes and measured -- i n  s i t u  exhib i ted  thresholds  

more than  1 eV higher  than  thresholds  obtained f o r  bulk samples mounted 

i n  t h e i r  tubes  following prepara t ion .  These film r e s u l t s  were not repro- 

ducible, poss ib ly  because of inadequate vacuum (pumping) during evapora- 

t i o n .  Peterson a l s o  measured t h e  EDCs of AgBr and AgCl ; a t y p i c a l  

AgBr curve is  compared t o  t h e  present  work i n  Fig.  3.11. 
a r e  drawn on an absolu te  energy s c a l e  and cannot be shif ted t o  b r i n g  

s t r u c t u r e  i n t o  agreement.) 

a s l i g h t  c o r r e l a t i o n  between t h e  high energy shoulders and t h e  peaks i n  

t h e  curve from t h i s  study; even t h i s  agreement may be f o r t u i t o u s ,  I n  

Pe te r son ' s  AgBr curves "most of t h e  e x t e r n a l  photoelectrons emerge 

wi th  energ ies  between 0 and 2 - 5  eV (above t h e  threshold,  w i th )  only a 

small t a i l  moving out t o  higher energ ies  w i t h  increas ing  inc ident  (photon) 

energy". This i s  c h a r a c t e r i s t i c  of curves which a re  dominated by  sur- 
face  contamination e f f e c t s  ("universal" curves") e 

can be made f o r  A g C l  I n  Fig. 3,l2, t h e  y i e l d  near th reshold  has a 

sma l l e r  slope, and it has a lower onset by over 1 eV i n  e a r l i e r  work by 

Peterson and Fleischmann. 

-- 
The su r face  condi t ion  of t h e  samples i n  t h e  previous 

48 

48 

(These curves 

A s  can be seen i n  t h i s  f igure,  t h e r e  i s  only 

48 

The same compa,rison 

74979 (Note, t h e  break i n  t he  y i e l d  a t  7.7 eV 48 
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FIGURE 3.11. Comparison of energy d i s t r i b u t i o n s  f o r  e l e c t r o n s  photo- 
emitted from AgBr 
from t h e  p re sen t  work (normalized t o  t h e  quantum y i e l d  p e r  
i nc iden t  photon) and the  work of Peterson ( re ference  48) 
(un-normalized) . 

a t  2 S o K  f o r  a photon energy of 10.6 eV 

and t h e  lower energy region is  due t o  e l e c t r o n s  photoemitted from t h e  

s i l v e r  s u b s t r a t e  through t h e  A g C l  sample f i lm as w i l l  be discussed i n  
t h e  next chaqter . )  A c o q a r i s o n  of t h e  AgCl EDCs of Peterson t o  t h i s  

work, as shown i n  Fig. 3.13, aga in  shows v i r t u a l l y  no agreement and a 

fundamently d i f f e r e n t  behavior  wi th  changing hv e These charac te r -  

i s t i c s  of the d a t a  and the  sample p repa ra t ion  and handling techniques 

suggest t h a t  t h e  lower thresholds  prev ious ly  repor ted  f o r  A g C l  and 

-AgBr and s i g n i f i c a n t l y  d i f f e r e n t  EDCs a r e  due t o  sam'ple sur face  con- 

tamination. The r e s u l t s  of t h i s  i n v e s t i g a t i o n  a r e  the  f irst  photoemission 

measurements which a re  r ep resen ta t ive  of s i l v e r  ha ld ide  :properties 



FIGURE 3.12. Comparison of the s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  of 
e l e c t r o n s  photoemitted p e r  inc ident  photon from A g C l  a t  295'K from 
t h i s  work and t h e  works of Peterson ( re ference  49) and Fleischmann 
( re ference  74) 
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FIGURE 3.13. Comparison of energy d i s t r i b u t i o n s  f o r  e l e c t r o n  
photoemitted from A g C l  a t  293OK f o r  a photon 
energy of 11.1 eV from t h e  p re sen t  work 
(normalized t o  t h e  quantum y i e l d  p e r  inc ident  
photon) and t h e  work of Pe terson  ( re ference  43) 

(un-normalized) . 
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Iv. EXPERIMENTAL TECHNIQUES 

I n  t h i s  chsLpter t h e  experimental techniques a r e  discussed which 

were used t o  make what was perhaps t h e  f irst  d e f i n i t i v e  low temperature 

s tudy  of photoemission from s o l i d s .  The sample p repa ra t ion  and handling 

procedures! a r e  presented  which l e d  t o  t h e  f irst  measurement of e x t e r n a l  

photoemission which was r e p r e s e n t a t i v e  of bu lk  s i l v e r  ha l ide  p rope r t i e s .  

The a f f e c t  of var ious  sample parameters on s i l v e r  h a l i d e  photoemission 

are considered i n  de t a i l  a t  t h e  end of t h e  chapter.  Since t h e r e  has 

been such considerable emphasis on quantum y i e l d  and photoemission 

thresholds  i n  t h e  l i t e r a t u r e  (e .g., i n  t h e  pressure  dependent absorption 

work of Aust 

t h e  EDC data be presented, bu t  a l s o  t h e  y i e l d  d a t a  w i l l  be examined. To 

ga in  a f u l l  apprec i a t ion  f o r  bo th  t h e  techniques employed and t h e  appa- 
r a t u s  used t o  accomplish then, s i m p l i f i e d  schematic diagrams of t h e  

equipment a r e  accompanied by d e t a i l e d  photographs of t h e  a c t u a l  hardware. 

Emphasis w i l l  be p laced  on t h e  new experimental aspec ts  developed f o r  t h i s  

4 and t h e  energy bands of Bassmi, e t  al.,? not only w i l l  

Study. 

A. Vacuum 

To o b t a i n  meaningful data i n  a photoemission experiment, it is 

necessary t o  s tudy  samples wi th  a tomica l ly  c lean  sur faces  e 

i n  t h e  l as t  c h q t e r ,  t h e  measurements made on s i l v e r  halide samples which 

have been prepared without regard  t o  su r face  condition r e s u l t  i n  EDCs 

which have i n d i s t i n c t  th resholds  and much anornolous s t r u c t u r e .  Therefore, 

a c l ean  su r face  must be proper ly  pre:pared and t h e  samples measured in 
- s i t u  i n  an adequate vacuum environment t o  maintain t h e  c lean  sur face  

condition. The vacuum equipment used t o  accomplish t h i s  i s  shown sche- 

m a t i c a l l y  i n  Fig.  4.1, 
i n t o  t h r e e  s e c t i o n s :  u l t r a -h igh  vacuum (W)9 high vacuum (W), and low 

vacuum (LV). All of t h e  pumps, chamber, oven, e tc , ,  e x i s t e d  a t  t h e  time 

t h i s  study was begun; however, it was not assembled i n  t h i s  conf igura t ion  

As  discussed 

The a l l  304 s t a i n l e s s  s t e e l  system can be divided 
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FIGURE 4.1. Schematic diagram of t h e  vacuum system. 

and new pumpdown-bakeout techniques were d e v e l q e d  t o  lower t h e  system 

base pressure  by an order of magnitude. 

descr ibed,  I n i t i a l l y ,  valves 4 and 6 are  open and the  r e s t  c losed.  The 

system is  roughed t o  l e s s  than 3 p  i n  t h e  LV sec t ion  w i t h  a por tab le  Varian 

Vacsorb at tached t o  t h e  ex te rna l  p o r t  (valve 1 opened) followed by a 

second Vacsorb at tached t o  the  system (valve 2 opened). 

t i t an ium sublimation pump f i laments  and orb-ion p e p  body a re  outgassed 

i n t o  t h i s  second Vacsorb. 

and Orb-ion pumps a re  baked a t  175OC ( l imi t ed  by s e a l  of the  LiF 

window) and 5OO0C r e spec t ive ly  i n t o  t h e  t i t an ium sublimation and Varian 

8 1/s Vac-ion pumps (valve 3 opened) Torr 

on the  Varian nude ion  gauge, t h e  low vacuum sec t ion  is i so l a t ed  w i t h  

These :procedures w i l l  be b r i e f l y  

The Varian 

1 The vacuum chamber (designed by W.F. Krolikowsli 

A g C l  

A t  a p ressure  of le5 X 
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valve  4 and t h e  Ultek 20 l/s D-I pump is used wi th  t h e  t i t an ium pump as 

a second s t age  of bakeout. This HV s e c t i o n  is  l e f t  pumping i n  t h i s  mode 

so it can be used as an a u x i l i a r y  pumping s e c t i o n  during sample prepara- 

t i o n  if  t h e  p re s su re  g e t s  t oo  h igh  i n  t h e  UHV sec t ion ,  Torr 

i n  t h e  HV s e c t i o n  and 7 X 10 Torr i n  t h e  chamber, t h e  HV s e c t i o n  is 
i s o l a t e d  by c los ing  valve 6. The heat t apes  a re  turned o f f  on t h e  NRC 
206-1 Orb-ion and t h e  pump is  a c t i v a t e d  f o r  t h e  f irst  time w i t h  water 

used t o  cool  t h e  body and T i  b a f f l e .  The chamber continues t o  be baked 

i n t o  t h i s  pump t o  a p res su re  of 6 X 10"' Torr.  

tu rned  off ,  t h e  Orb-ion pump e f f i c i e n t l y  pumps t h e  chamber s ince  t h e  

conductance is  s o  high, This  procedure, which takes  about 5 days, l eads  
-11 t o  a base  pressure  of about 4 X 10 Torr i n  t h e  experimental chamber; 

t h i s  i s  about an order of magnitude lower than  was previous ly  poss ib l e .  

To g a i n  f u r t h e r  pumping speed dur ing  sample evaporation, t h e  e n t i r e  

Orb-ion body is made a l a r g e  cryopump by running l i q u i d  n i t rogen  i n  t h e  

water l i n e s  ( t h i s  procedure was f irst  developed by J. G. Endriz) e This  

reduces t h e  base  p re s su re  i n  t h e  chamber t o  aboufi 2 X 10 Torr as 

measured by t h e  NRC 554 Redhead gauge. 

s e c t i o n s  are shown i n  Fig.  4.2 and t h e  UHV s e c t i o n  w i t h  the photoemission 

f lange  removed i n  Fig.  4.3. 
allowed such low p res su res  t o  b e  achieved was t h e  mounting of t h e  rough- 

ing s e c t i o n s  so  c lose  t o  t h e  UHV experimental  p a r t .  

ductance t o  t h e  rough pumps and add i t ion  of t h e  e x t r a  roughing s e c t i o n  

(LV) allowed a lower bakeout p re s su re  p r i o r  t o  using the  Orb-ion pump. 

-9 A t  4 X 10 
-9 

With t h e  oven f i n a l l y  

- 12 
Photographs of the  LV and HV 

The major innovation of t h i s  system which 

The increased con- 

B o  Sample Prepara t ion  

I n  prepar ing  samples f o r  t h e s e  experiments, cons idera t ion  must be 

given t o  bo th  t h e  p r o p e r t i e s  of t h e  s i l v e r  halides and t h e  requirements 

imposed by t h e  measurement, A s  noted above, perhsps t h e  most important 

material c h a r a c t e r i s t i c  f o r  photoemission s t u d i e s  is t h e  condi t ion  of 

t h e  su r face .  

r i a l s  t o  prepare  samples w i t h  a tomica l ly  c l ean  sur faces  i n  u l t r a -h igh  

vacuum. Though high p u r i t y  s i n g l e  c r y s t a l s  of A g C l  a r e  avai lable ,  it 

Many methods have been used i n  t h e  p a s t  on various mate- 
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80 is  not poss ib le  t o  c leave them because of t h e i r  p l a s t i c  c h a r a c t e r i s t i c s e  

For t h e  same reason9 hea t  c leaning or s p u t t e r  c leaning of s i n g l e  c r y s t a l s  

is imprac t ica l  f o r  t h e  s i l v e r  ha l ides .  Thus, i n  t h i s  study, c r y s t a l -  

l i n e  t h i n  f i lms  of a l l  t h r e e  ha l ides  were prepared i n  t he  experimental 

chamber by high vacuum vapor depos i t ion  of g r e a t e r  than  99.999% pure 

powder, This  high p u r i t y  s i l v e r  ha l ide  s t a r t i n g  material was purchased 

from Atomergic Chemetals Co., Carle Place, Long Island, New York, 

659 49,% s tud ie s  have e s t  ab1 i s hed t h a t  
81 Elec t ron  microscopy and o p t i c a l  

evaporated t h i n  f i lms  are good model systems f o r  bulk  s i l v e r  ha l ide  

p rope r t i e s  . 
d i t i o n s  a re  discussed i n  t h i s  sec t ion .  

De ta i l s  of t h e  t h i n  film prepara t ion  procedures and con- 

1 e Evaporation 

The evaporation pressures  var ied  from 2 X lo-’ Torr  t o  3 X 10 

with gas b u r s t s  as high as  5 X 10 T o r r  f o r  AgC1 . The d i f f i c u l t i e s  

i n  achieving lower evaporation pressure  appear t o  be two-fold. F i r s t l y ,  

during evaporat ion some of the  s i l v e r  ha l ide  melt decomposes i n t o  s i l v e r  

and halogen gas s ince  the amount of pho to ly t i c  decomposition is  known t o  

g r e a t l y  increase at e leva ted  temperatures .83 Fortunately,  t he  evapora- 

t i o n  temperature ( t o  be discussed next) is low enough so the  s i l v e r  does 

not evaporate with t h e  molecular s i l v e r  h&lide but remains i n  t h e  evapora- 

t i o n  vesse l .  The halogen gas t h a t  is emit ted is very d i f f i c u l t  t o  pump 

and is p a r t  of t h e  cause f o r  t h e  high pressures .  Secondly, t h e  Orb-ion 

pump is very poorly s u i t e d  f o r  evaporations.  This  is because t h e  amount 

of t i t an ium sublimation is con t ro l l ed  by t h e  impact of e l ec t rons  on t h e  

T i  c a r t r i d g e s  on the anode and hence the  pressure .  Unfortunately, it 
takes  time f o r  t h i s  process  t o  r eac t  t o  rap id  pressure  changes which 

occur over a shor t  time per iod  such as t h e  evaporation per iod,  This 

amounts t o  a l o s s  of T i  ’pumping during t h e  evaporation and hence a 

higher  pressure .  

evaporation by using t h e  high vacuum sec t ion  (HV i n  Fig. 4.1) which was 
normally at 1 X lo-’ Torr ( i . e a 9  opening valve 6 during evaporation) 

I n  addition, t h e  pumping speed was increased by cooling t h e  pwnp and 

b a f f l e  wi th  LN2 running i n  t h e  cooling l i n e .  It is i n t e r e s t i n g  t h a t  

a f t e r  eva,poration t h e  T i  deposi ted on top  of t h e  adsorbed halogen gas 

-8 Torr 
-6 

A s  noted i n  s e c t i o n  A, t h e  pressure  was reduced during 



helped t o  keep t h e  pressure  when the  

t h e  maximum pressure  encountered during evaporation. 
LN2 was turned of f ,  we l l  below 

A compilation and ex t r apo la t ion  o f  e x i s t i n g  vapor pressure  
- 10 p r e d i c t s  t h a t  AgCl evaporates a t  between 130°C a t  10 Torr 84-96 d a t a  

and 39OoC at 5 X 10 

t h a t  a t  these  low evaporation temperatures very l i t t l e  hea t ing  of the  

chamber and subsequent outgassing w i l l  occur. The evaporator used i n  

these  s tud ie s  was designed by B. H. S ~ h e c h t m a n ~ ~  and is  shown i n  t h e  

background of Fig.  4.4. 

-6 Torr. This is very s i g n i f i c a n t  s ince  it means 

The quar tz  buckets which hold the  s t a r t i n g  

FIGURE 4.4. Photogrqph of t he  evaporator wi th  the  residue l e f t  follow- 
ing evaporation of (a)  AgBr, (b) AgC1, and (e )  AgI shown 
i n  t h e  foreground. 
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powder (foreground) f i t  w i t h i n  a con ica l  tantalum hea te r  f i lament 

These a r e  then  surrounded by a molybdenum con ica l  s h i e l d  and top  ( t o  

t h e  r i g h t  of f i l ament )  with only a small hole  i n  t h i s  top  t o  allow 

evaporation. This s h i e l d  se rves  t h e  dua l  r o l e  of keeping the l i g h t  

emi t ted  by the Orb-ion pump from t h e  powder and r e f l e c t i n g  t h e  fi lament 

hea t  back to t h e  melt .  This  allows t h e  evaporator  t o  be operated at 

low cu r ren t  l e v e l s  i n  order  t o  reduce t h e  h e a t e r  f i l ament  l i g h t  emissiun, 

and thereby seduce p o s s i b l e  p h o t o l y t i c  decomposition of t h e  t h i n  f i l m  

as it i s  be ing  deposited.  The three buckets i n  t h e  foreground show 

t y p i c a l  examples of t h e  res idue  l e f t  following evaporat ion of t h e  t h r e e  

h a l i d e s :  (a)  AgBr, (b) AgC1, and ( c )  &I. Both AgBr and A g C l  

evaporate from t h e  l i q u i d  s t a t e .  A s  can be  seen by t h e  c l e a r  AgBr 

b u t  s i l v e r y  A g C l  , AgCl seems t o  decompose much more r e a d i l y  during 

evzporation. Th i s  i s  cons i s t en t  wi th  the h igher  evaporation pressure  

encountered f o r  t h i s  h a l i d e ,  AgI sublimes from t he  s o l i d  s t a t e  and 

behaves q u i t e  d i f f e r e n t l y .  

a gray, hairy,  a sh - l ike  res idue  is l e f t  i n  t h e  boat.  Such a AgI 

r e s idue  was a l s o  observed by Brady. 

A s  can be seen  i n  (c ) ,  during evaporat ion 

87 

This evaporator  i s  mounted on t h e  photoemission f lange  (Fige 4.4) 
I n  i ts  o r i g i -  

The powders 

as shown i n  t h e  f u l l  photograph of t h e  flange, Fig. 4.5. 
n a l  form, t h i s  f l ange  was designed by  W. F. Krolikowski? 

were s to red  i n  a l i g h t - t i g h t  d e s s i c a t o r  s ince  they  are s l i g h t l y  hygro- 

scopic.  The evapora tor  was f i l l e d  under red  s a f e l i g h t ,  and the view- 

p o r t s  of t h e  chamber were covered w i t h  red  cellophane t o  avoid e x p s u r e  

to room l i g h t .  

2 .  Subs t r a t e  

Considerat ion had t o  be given t o  the r e a c t i o n  of t he  s i l v e r  ha l ides  

wi th  m a t e r i a l s  used i n  t h e  experimental  apparatus.  

important f a c t o r  i n  choosing an appropr ia te  conducting s u b s t r a t e  f o r  

photoemission measurements. It is known tha t  many metals r e a c t  r e a d i l y  

w i t h  AgC1 and cause i t s  decomposition by a simple replacement r eac t ion ,  

It has been found i n  t h i s  s tudy  that  both  copper and n i cke l  are  unsui t -  

able  as s u b s t r a t e  m a t e r i a l s  because of t h e i r  i n t e r a c t i o n  with t h e  AgC1 

This  was an e s p e c i a l l y  

90 
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FIGURE 4.5 e Photogrzph o f  t he  photoemission f lange.  
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being  deposi ted onto t h e i r  surface.  S i l v e r  was used as  a subs t r a t e  

ma te r i a l  f o r  AgC1 and AgBr s ince  it was non-reactive wi th  these  

hal ides ,  bu t  platinum had t o  be used f o r  AgI s ince  t h i s  ha l ide  is 

r e a c t i v e  w i t h  s i l v e r e g g  An experiment was conducted with A g C l  on a 

Pt s u b s t r a t e  and no e f f e c t  o the r  than  a higher t rheshold  was found due 

to the  s u b s t r a t e  mater ia l .  

E.)  
(a photograph is seen i n  Fig. 4.17). Rolled 99.99$ pure s i l v e r  sheet  

and a pressed  99.995 Pt p iece  were used as  s t a r t i n g  ma te r i a l s -  The 

work hardening of t hese  s o f t  metals allowed them to be pol ished t o  a 

mirror  f i n i s h .  They were heat-cleaned a t  45OoC and 1 X 10 

t h e  measurement chamber p r i o r  t o  evaporation. 

l imi t ed  by the  ,physical  l i m i t a t i o n s  of t h e  f lange . )  

f o r  t h e  cleaned s u b s t r a t e s  t o  insure a contamination f r e e  sur face ,  Some 

of t h e  b e s t  measurements f o r  these  metals t o  date  were obtained. These 

(This w i l l  be discussed i n  d e t a i l  i n  sec t ion  

The s u b s t r a t e s  were 0.37" X 0.67" t o  f i t  t h e  holder on t h e  f lange 

- 10 
T o r r  i n  

(This temperature is 

EDCs were measured 

curves a r e  presented i n  Appendix B. This  problem of t h e  r eac t ion  of t he  

s i l v e r  ha l ides  w i t h  o the r  s o l i d s  is p a r t i c u l a r l y  important f o r  s t a i n l e s s  

s t e e l  from which most of t h e  f lange p a r t s  a r e  b u i l t .  Since A g C l  does 

r e a c t  w i t h  s t a i n l e s s  s tee l , "  sh i e lds  were constructed of Mo t o  re- 

s t r i c t  the  s i l v e r  ha l ide  vapor from depos i t ing  on any surfaces  except 

t he  s u b s t r a t e  and thickness  monitor as  ind ica ted  on the  l e f t  s i d e  of 

Fig. 4.5. 
be con t ro l l ed  from 80 t o  725OK as shown schematical ly  i n  Fig. 4.6. 
s u b s t r a t e  i s  heated above room temperature w i t h  a r e s i s t ance  hea ter  

mounted i n  the  s u b s t r a t e  holder.' The subs t r a t e  can be cooled t o  any 

temperature down t o  80°K by t h e  same gas cooling techniques descr ibed 

For t h e  evaporation, t h e  temperature of t h e  subs t r a t e  could 

The 

i n  the  next s ec t ion ,  For s tud ie s  of t h e  s i l v e r  hal ides ,  it has been 

found t h a t  t h i n  f i lms  form e p i t a x i a l l y  on a c r y s t a l l i n e  subs t r a t e  f o r  

temperatures just above room temperature t o  around 150 C e  A s  w i l l  be 

discussed i n  sec t ion  E, it was found t h a t  t he  photoemission EDCs from 

AgBr were independent of  the subs t r a t e  temperature during growth, Ts 

over t h i s  range. Most f i lms were formed at Ts = 75 C t o  insure 

e p i t a x i a l  format ion,  

0 E31 

0 
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3 Thin Film Prope r t i e s  

I n  choosing a des i r ed  th ickness  f o r  t h e  s i l v e r  ha l ide  films, con- 
s i d e r a t i o n  must be given t o  t h e  e f f e c t s  of t h e  high r e s i s t i v i t y  of these  

compounds. Typically, A g C l  has a room tenrperature r e s i s t i v i t y  of 

10 h2-cm, and a much higher value a t  !30°K. It has been found i n  
previous work on low conduct ivi ty  in su la t ing  t h i n  f i lms  t h a t  s t r u c t u r e  

i n  t h e  measured EDCs can be d i s t o r t e d  i n  both p o s i t i o n  and r e l a t i v e  

This is due t o  both a p o t e n t i a l  d i f fe rence  across t he  

film,36 and a charging of t h e  sur face  by t h e  holes  l e f t  behind by t h e  

photoemitted e l e c t r o n s ,  It is found t h a t  f o r  many insu la to r s  these  

e f f e c t s  can be eliminated, even a t  

sample f i lms  s u f f i c i e n t l y  t h i n .  I n  order  t o  accura te ly  deposi t  f i lms  

of 200 t o  400 1 thickness,  a quartz  c r y s t a l  microbalance, designed and 

b u i l t  by T o  H. DiStefano, i s  used t o  monitor t h e  evaporation. A much 

improved frequency s t a b i l i t y  of t h e  AT cut  quartz  c r y s t a l s  was achieved 

by annealing them a t  3OO0C i n  evacuated tubes and slowly cool ing t o  r e -  

l i e v e  t h e  c r y s t a l  s t r a i n s  produced during evaporation of t h e  me ta l l i c  

e lec t rode .  This thickness  monitor i s  mounted beside t h e  subs t r a t e  

during t h e  evaporation, as shown i n  t h e  schematic (Fig. 4.6) e The depo- 

s i t i o n  thickness,  T , i s  simply r e l a t e d  t o  t h e  frequency change of t he  

quartz  c r y s t a l  Af by t h e  dens i ty  of  t he  film, p : 

3 80 

2 

LN2 temperature, by making the  
2 

2 

2 

The f a c t o r  0.56 was experimentally determined by t h e  author and 

T. 11. DiStefano by c a l i b r a t i n g  the  c r y s t a l s  wi th  t h i c k  films and 

checking t h e  th ickness  both with a Varian 2 scope and weighing the  

film with a microgram balance.  The evaporator is shut te red  t o  accurately 

con t ro l  t h e  evaporation time (see Fig.  k e 5 ) -  It is of  considerable a id  

i n  con t ro l l i ng  t h e  evaporation t o  e s t a b l i s h  a s tab le ,  kn@wn ev?poration 

r a t e  p r i o r  t o  t h e  a c t u a l  deposi t ion.  For t h i s  purpose, a second quartz  

c r y s t a l  monitor i s  loca ted  between the  evaporator and s h u t t e r  as shown 

i n  Fig. 4.7. 
pumped b e l l  jar and was used f o r  prel iminary mater ia l s  t e s t i n g ;  it was 

The zpparatus shown i n  t h i s  photograph mounts i n t o  an ion- 
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FIGURE 4.7. Photograph of t h e  b e l l  j a r  evaporation apparatus showing 
the  arrangement used f o r  prepara t ion  of samples. 
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b u i l t  t o  t h e  same dimension8 as the evaporation sec t ion  of t h e  photo- 

emission f lange ,  The a c t u a l  f i lm  deposi t ion r a t e ,  dTT/dt $ at t h e  

s u b s t r a t e  is  just  geometr ical ly  r e l a t e d  to t h e  measured r a t e  monitor 
value, dTR/dt by: 91 

where $ i s  t h e  angle of t h e  thickness  (T)  o r  r a t e  (R) monitor t o  

t h e  SOWCQ (measured from t h e  v e r t i c a l ) ,  and D is t h e  v e r t i c a l  d i s tance  

of each monitor from t h e  sourceo 
c d l y  evaporated at 1-3 g/s. 

e :p i tax ia l  formation of t h e  f i lms  e 92 

on t h e  photoemission f lange is shown i n  Fig,  4.8, 

The Films i n  these  s tud ie s  were ty-pi- 

Such slow rates were used t o  enhance t h e  

The a c t u a l  evaporation apparatus 

The a c t u a l  prepara t ion  condi t ions f o r  each of t h e  samples s tud ied  

are summarized i n  Table IV.1. The sanzples a re  i d e n t i f i e d  by ma te r i a l  

( e s g e p  AgCl), by t h e  pumpdown (e.gfo, 111), and by t h e  f i l m  (e.g., B). 
Because of t h e  low evaporation temperature of t h e  s i l v e r  hal ides ,  t h e  

s u b s t r a t e  could be heated t o  45O0C, and t h e  sample f i l m  evaporated o f f .  

Thus, more than  one f i l m  could be s tud ied  i n  each pumpdown. 

mum pressure  which occurs d u r i n g  evaporation is tabula ted  as  

Also included i n  t h i s  t a b l e  is t h e  metal  f i l m  which was deposi ted on the  

The maxi- 

* 

ins ide  of t h e  c y l i n d r i c a l  c o l l e c t o r ,  A f r e s h  f i l m  was evaporated from 

a p r m e l t e d  bead on a Mo wire f o r  each pumpdown t o  provide a uniform 

collector work func t ion  (see Fig.. 4.6), 
i n  t h e  c o l l e c t o r  a r e  c losed wi th  s h i e l d s  t o  keep t h e  rnetal from deposi t -  

ing on t h e  LiF window and s u b s t r a t e  (see r i g h t  s ide  of Fig. 4*5 ) *  The 

bead, is  mounted on a l i n e a r  motion s o  it can be removed from t h e  col-  

- l e c t o r  during measurement (see Fige  k e 9 )  e 

The f r o n t  and back openings 

A s  discussed a t  t h e  beginning of t h i s  sect ion,  it has been estab-  

l i s h e d  t h a t  t h i n  films of t h e  s i l v e r  ha l ides  are good moc?el systems f o r  

t h e  s tudy of bulk p rope r t i e s .  

films used i n  t hese  s t u d i e s  are "goodt1 films from the  viewpoint of t h e i r  

phatoemissive p rope r t i e s ,  a very t h i c k  f i l m  was t h e  last  sample deposited 

I n  order  t o  determine i f  the  very t h i n  
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FIGURE 4 +,!3 e Pho togrqh  of t h e  evsporat ion sect  ion of t h e  photoemission 
flange .I 
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TABU IV.1. Mater ia l  parameters fo r  t h e  samples used i n  t h i s  work 
including the  thickness ,  T , evaporation rate* dT/dt , 
maximum pressure during evaporation, Pw and sub- 
s t r a t e  temperature during deposit ion,  Ts * 

SAMPLE 

I - A  

I - B  

I-c 
1 1 - A  

lgBr 1 1 - B  

11-c 
I1 -D 
1 I-E 

1 1 1 - A  

IV-A 

I - A  

I -B 

I-c 
1 1 - A  

1 1 - B  

11-42 

1 1 1 - A  

Q C l  111-B 

111-c 
1 1 1 - D  

IV-A 

IV-B 

I V - c  

IV-D 

V-A 

I -A 

1 1 - A  

Ig1 1 1 - B  

11-c 

6,100 2.7 9.5 x lo-E3 22 4 3  Au 
230 2.6 3.1 x LO-’ 22 Ag Au 

305 1.9 2.5 x lo--$ 75 ag Au 

< 265 2.3 1.6 x lo-’ 175 - 4 3  AU 

365 2.5 2e5 x lo-g 50 Ag AU 

6,070 1.8 5.5 x lo-5 50 Ag AU 

270 l e 5  1.5 X LOu8 75 Ag Au 

150? 22 Ag Au 
200 1.1 3.2 x 10-9 5 Ag Au 

2 13 22 Ag Au 

5,550 1.0 22 Ahs Au 

320 6.4 1.4 x 10-7 29 & Au 

175 0.3 1.0 x 10-9 22 Ag Au 

6,050 3.4 1.2 x 10-7 22 Ag Au 

325 2.5 1.4 x 10-7 75 Pt cu 

290 2 , 1  5.4 x 10-7 22 Pt cu 

2 15 3*3 x 10-7 50 Pt cu 
5,630 3.6 2 a o  x lo--6 75 Pt cu 

135 3.0 6.0 x lo-’ 75 Ag cu 

150 1 - 7  4,O X loe9 125 Ag cu 

6,150 1.2 3.5 x 10-9 75 Ag cu 

1% 1.6 400 x 10-7 75 Ag Au 

165 oe6 9.0 x 75 Ag cu 

405 1 ,4  2 .0  x 10-7 75 Pt Au 

220 0,9 1,o x 10 75 Pt Au 

200 0-7 1.0 x loe6 7!3 Pt Au 

-6 

3,010 1.6 2.1 x lo-6 75 Pt Au 
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each pumpdown. These f i lms were evaporated under the  same conditions 

(e.g., evaporation r a t e  and subs t ra te  temperature) as t he  very t h i n  

f i lms .  A s  w i l l  be discussed i n  sec t ion  E9 it was found t h a t  a t  room 

t e q e r a t u r e  the re  were no s ign i f i can t  differences i n  the EDCs and y i e ld  

between f i lms t h a t  were 300 8 and 0.6 pm th ick .  

t h e  t h i c k  f i lms could not be measured a t  

t h e i r  high r e s i s t ance .  These samples were removed from the  chamber and 

were invest igated by X-ray d i f f r ac t ion .  The results are  summarized i n  

Table IV .2 .  

A s  explained above, 

temperatures because of LNz 

TABU IV.2 e Orientation and p a r t i c l e  s i z e  from X-ray d i f f r a c t i o n  
measurements of t h i ck  f i lms used i n  t h i s  work. 

SAMPLF 

I EVAP 

11-c 
EVAP 

PARTICLE FILM SUBSTRATE 
SIZE ORIENT AT ION ORIENTAT I O N  SUBSTRATI 
(8) 

(The "EVAP" samples were from b e l l  j a r  evaporation s tudies . )  

seen, these  t h i c k  films are  c h a r a c t e r i s t i c  of pure polycrys ta l l ine  s i l v e r  

ha l ide  f i lms which were highly or iented i n  t h e  (ZOO)  d i rec t ion  for AgBr, 

(111) f o r  AgC1, and hexagonal, B phase (002) f o r  &I. The p a r t i c l e  

size, as calculated from t h e  broadening of t he  X-ray l i n e s  (assuming 

negl ig ib le  was from 4,000-5,000 2 f o r  AgCl and AgBr 

A s  can be 



and around 800 2 f o r  AgI a Thus, t h e  very thiln f i lms  are representa t ive  

of bulk s i l v e r  ha l ide  photoemission. 

These X-ray measurements were unable t o  de t ec t  any impurit ies,  such 

as Ag , within t h e  3% r e so lu t ion  of t h i s  technique. The p u r i t y  of t h e  

samples i s  very important s ince  t h e  amount of photo lys i s  is  dependent on 

t h e  p u r i t y  of t h e  s i l ve r  ha l ide  and t h e  concentrat ion of c r y s t a l l i n e  

imperfections.  The quest ion of photo lys i s  is  e spec ia l ly  important i n  

performing photoemission experiments s ince  it is  well known t h a t  photo- 

l y t i c  darkening is produced by l i g h t  quanta having t h e  same range of 

energ ies  as  those which produce  photocurrent^.'^ The b a s i c  process of 

t h i s  pho to ly t i c  decomposition can be s m a r i z e d  as follows. 94 
energy requi red  t o  d isp lace  a s i lver  ion from i ts  normal l a t t i c e  pos i -  

t i o n  i n t o  an i n t e r s t i t i a l  s i g h t  is r e l a t i v e l y  small ,  

t h e  jump frequency of these  i n t e r s t i t i a l  

near loL1 Hz, 
combine wi th  t h e  migrat ing i n t e r s t i t i a l  s i l v e r  ions t o  form atoms of 

m e t a l l i c  s i l v e r .  These atoms ac t  as e l ec t ron  t r a p s  thereby captur ing 

a d d i t i o n a l  photoelectrons,  This cycle  is  repeated many times u n t i l  a 

s i l v e r  speck is formedP The net  e f f e c t  is a decomposition of t h e  AgC1 
with ch lor ine  gas appearing a t  t he  i l luminated sur face  and. a not iceable  

The thermal 

A t  room temperature, 

Ag+ ions i s  very l a r g e  being 

The photoelectrons produced by t h e  incident  photon f l u x  

darkening of t h e  sample volume. The concentrat ion of jmperfections 

a f f e c t s  t h i s  process  s ince  it is found t h a t  t h e  specks  of s i lver  metal  

are deposi ted on imperfections,  such as d is loca t ions ,  wi th in  an A g C l  

c r y s t a l . %  

darkening,96 

t h i s  i nves t iga t ion  and the  s t a b i l i t y  wi th  time of t he  EDCs (see sec t ion  E) ,  

t h e  f i lms  a re  of s u f f i c i e n t  p u r i t y  (higher than  t h a t  of t h e  99*999$ pure 

_starting ma te r i a l )  and uniformity t ha t  even if  the re  i s  any pho to ly t i c  

decomposition occurring, it is very slow and has no major e f f e c t s  on t h e  

photoemission daka- This  is a l so  cons i s t en t  w i th  the  observation t h a t  

at low l e v e l s  of photoproduct formation, t h e  e f f e c t s  on the  absorption 

spectrum are  very s l i g h t  and add no f i n e  s t ruc tu re .  

In  extremely pure samples, one cannot form a v i s i b l e  volume 

From observat ion of  s i l v e r  ha l ide  t h i n  f i lms  prepared f o r  
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C. Cooling 

As noted i n  Chapter I, p r i o r  t o  t h i s  s tudy equipment had been b u i l t  
2 by W. F. Krolikowski' and T. He DiStefano t o  measure EDCs a t  LN2 

temperature. These e a r l i e r  experimental techniques did not a l low f o r  
measurements a t  temperatures intermediate  t o  295 and 80'K and did not 

overcome the cool ing l i m i t a t i o n s  imposed by t h e  photoemission measure- 

ment. The l a t t e r  include pr imar i ly  t h e  l a r g e  e l e c t r i c a l  uoise i n t r o -  

duced by t h e  bubbling of the  

condensation of water m p o r  on t h e  e lec t rodes .  I n  t h i s  sect ion,  emphasis 

w i l l  be placed on the  major modifications made on the  e x i s t i n g  equipment, 

t he  new apparatus designed and b u i l t  f o r  t h i s  study, and t h e  new tech- 

niques developed t o  measure t h e  dependence of EDCs on temperatures rang- 

ing continuously from room t o  LN2 values .  

LE$ and t h e  leakage current  caused by 

1. S e t t i n g  Sample Temperature 

After  t h e  sample t h i n  f i lm i s  prepared as described i n  the  previous 

sect ion,  t hq  s u b s t r a t e  is  pivoted using a l i n e a r  motion from t h e  hori-  

zon ta l  p o s i t i o n  shown i n  Fig. 4.6 i n t o  the  c o l l e c t o r  and a v e r t i c a l  

p o s i t i o n  normal t o  t h e  inc ident  monochromatic l i g h t  beam as shown i n  

Fig. 4.9. This f lange was o r i g i n a l l y  b u i l t  w i t h  a hollow box i n  t he  

s u b s t r a t e  holder  which could serve  as a r e se rvo i r  f o r  

through hollow s t a i n l e s s  s t e e l  tubes and bellows.' 

c u l t i e s  with t h i s  design were t h a t  (1) the  output had t o  be vacuum 

pumped t o  draw t h e  LN2 

v3porized l i q u i d  prevented the  LN2 from reaching the  reservoir ,  and 

(2) even when pumped, t he  bubbling of t h e  

severe v ib ra t ions  and hence e l e c t r i c a l  noise i n  t h e  EDCs. To overcome 

these  d i f f i c u l t i e s ,  cold gas was forced under 'pressure through t h e  

r e s e r v o i r  t o  accomplish t h e  cool ing as  p i c tu red  i n  Fig. 4.10. 

LN2 feed t o  it 

The major d i f f i -  

t o  t h e  r e se rvo i r  s ince  t h e  back pressure  of 

LN2 i n  the  r e se rvo i r  caused 

Further, 

by ad jus t ing  the flow rate of the gas, t h e  hea t  l o s ses  i n  t h e  support 

members could be compensated by varying amountse I n  t h i s  way, t he  

temperature o f  t he  s m p l e  was con t ro l l ab le .  

v ib ra t ion  of t h e  s u b s t r a t e  was negl ig ib le ,  and the  EDCs could be measured 

without noise  degradation while t he  gas was flowing. 

A t  low gas pressures ,  the  
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FIGURE 4.9. Schematic diagram of the flange apparatus used to measure 
photoemission at tepperatures ranging continuously from 
room t o  l iquid nitrogen values. 



GAS IN GAS OUT 

FIGURE 4.10.. Photograph of t he  cool ing gaz flow pa th  i n  t h e  photo- 
emission f lange  e 
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The temperature was set t o  any value between 90 and 295OK not only 
by balancing the heat lo s ses  but  a l s o  by using and mixing var ious gases.  

The gas was cooled i n  a 

Figo  4,11. 
LN2 heat  exchanger shown schematically i n  

gas was l i q u i f i e d  so  e f f i c i e n t l y  by the copper heat  N2 

H 

FIGURE 4.11, Schematic diagram of the  apparatus used t o  con t ro l  t he  
cool ing gas temperature. 

exchanger t h a t  a uniform flow could not be maintained except at very 

high p res su rese  By using forming gas (904 N2 - 104 €$,), t h i s  d i f f i -  

c u l t y  was overcome; s ince  the  s m a l l  amount of 

l i q u i f y ,  it would serve  as a vehic le  f o r  t h e  semi- l iqu i f ied  

Thus, a uniform flow r a t e  could be achieved. H e l i u m  was found t o  be a 

very poor gas s ince  i n  t h i s  exchanger it did not cool  much below 200°K. 

This made it a useful gas f o r  higher  teqpera ture  where the  cooled forming 

gas was at too  low a temperature,  The flow r a t e  f o r  both gases were 

€$, i n  t h e  gas would not 

N2 e 

con t ro l l ed  by 

s ince  at very 

the heat  exchanger 

low rates a near ly  

input gas pressure  (valve 1 i n  Fig. 4.11) 
closed oukput valve ( 2 )  produces a l a r g e  
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amount of l i q u i d  i n  t h e  exchanger which makes the  flow e r r a t i c .  A second 

valve (3)  was placed a f t e r  t he  heat  exchanger output (valve 2 )  t o  e i t h e r  

be used as a second output po r t  (u se fu l  i n  balancing the  flow of t he  

primary output)  o r  a w a r m  gas input as shown i n  t h i s  f i gu re ,  

was its purpose i n  t h i s  study as w i l l  be discussed i n  sec t ion  2 .  A 

photograph of t he  hea t  exchanger i s  shown i n  the  top  ha l f  of Fig.  4.12. 

The l a t t e r  

WA 
GAS 

\ GAS 
/OUTPUT 

COLD GAS 
A 0  JUSTMENT 

-WARM GAS 
ADJUSTMENT 

FIGURE 4,12. Photograph of t he  LN heat  exchanger and, i n  t h e  fore-  
ground, t he  LN2 e o 6  f inge r  con t ro l  tubes * 
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The important t h i n g  t o  note i n  t h e  photogrzph i s  t h a t  t he  use of mul t ip le  

windings of small i .d .  copper tubing i n  t h e  dewar was i n  p a r t  responsible  

f o r  t h e  high cooling e f f i c i ency  of t h e  hea t  exchanger, 

t h i s  hea t  exchanger i n  actual. opera t ion  is shown i n  Fig. 4.13. 
be seen i n  t h e  lower r i g h t  corner of t h i s  f igure,  t h e  thermocouple reads 
p r e c i s e l y  7 7 O K  (-5.70 mV r e f e r r e d  t o  

A photograph of 

As can 

0 mV at O°C) e 

2 ., _. Maintaining Sample Temperature 

The photoemission f lange  was very  poorly designed o r i g i n a l l y  from 

t h e  s tandpoint  of thermal i n s u l a t i o n  of t h e  subs t r a t e  holder  from t h e  

support  s t r u c t u r e ,  The l a r g e  heat  l o s ses  necess i t a t e  t h e  use of very 

high flow rates of c h i l l e d  forming gas  t o  achieve 

At such high r a t e s  t he  subs t r a t e  holder  begins t o  v i b r a t e  s u f f i c i e n t l y  

t o  cause considerable  noise i n  t h e  EDCs, 

off t h e  gas while t ak ing  da ta .  The large heat  l o s ses  of t h e  f lange 

caused t h e  temperature t o  r ise by some 25'K during t h e  four  minutes 

required t o  t r a c e  an EDC. 

t he re  is some EDC s t r u c t u r e  which changes considerably over t h i s  tempera- 

t u r e  range. Thus, t he  f lange  had t o  be modified t o  maintain t h e  tempera- 

t u r e  set  by t h e  cold gas  reasonably constant after t h e  gas was turned o f f .  

The f lange  a l ready  had a provis ion  whereby t h e  c o l l e c t o r  could be cooled 

t o  LNz temperature; t h e  c o l l e c t o r  i s  a c t u a l l y  mounted on a LN2 cold 

f i n g e r  as shown i n  F igo  4.14. 
from t h e  cold f inger ,  it was mounted with sapphire washers (shown i n  t h e  

f i g u r e )  s o  t h a t  any poss ib l e  water condensation on the  g l a s s  i n su la t ion  

of t h e  cold f i n g e r  on t h e  top  of  t h e  f lange  could no longer cause EDC 

noise.  

temperature but  is s t i l l  a good e l e c t r i c d  i n s u l a t o r o  

of t h i s  c o l l e c t o r  hea t  s ink  by contac t ing  t h e  sample emi t te r  t o  the  

c o l l e c t o r  through sapphire  as shown i n  F ige  4.13. 

LN2 temperature. 

It was thus necessary t o  t u r n  

A s  w i l l  be shown i n  Chapter V I 1  (Fig. 7.1) 

To e l e c t r i c a l l y  i s o l a t e  the  c o l l e c t o r  

Sapphire a c t s  as a b e t t e r  thermal conductor than  copper a t  LN2 
We took advantage 

The sapphire is mounted on t h e  end of a copper-backed s t a i n l e s s  

s t e e l  spr ing  which is connected t o  t h e  co l l ec to r .  A s p e c i a l  capper 

p l a t e  was brazed onto t h e  s u b s t r a t e  holder  t o  contact  t h e  spr ing  when 

,the sample was ins ide  the  c o l l e c t o r ,  The spr ing provides s u f f i c i e n t  
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FIGURE ke13(a )  Photograph of t h e  qpparatus used t o  con t ro l  the  
temperature of t he  sample continuously from room t o  
liquid ni t rogen  values .  
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60 
I 

FIGURE 4.13(b) Pho togrqh  of t h e  apparatus used t o  c o n t r o l  t h e  
temperature of t h e  sample cont inuously from room 
t o  l i q u i d  n i t rogen  values, 



LN2 COLD 

FIGURE 4.14. Photogr3ph of  t he  I&T2 cooled c o l l e c t o r .  
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FIGURE Pho togrqh  of t h e  apparatus used t o  thermally 
contac t  t h e  e m i t t e r  to t h e  c o l l e c t o r .  
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t e n s i o n  between t h e  sapphire and contact  t o  reduce t h e  warming of t he  

sample t o  only 8 O K  during the  per iod  of EDC measurement. A s  w i l l  be 

discussed i n  s e c t i o n  E, no change i n  EDC s t r u c t u r e  occur over such a 

small temperature range, The contact  w i th  the m2 cooled c o l l e c t o r  

lowers t h e  temperature of t he  sample t o  about l B ° K  without any o the r  

cooling. This c rea t e s  t h e  circumstance where one is warning above as 

we l l  as cool ing below t h i s  temperature w i t h  t h e  gas; t h i s  is the reason 

f o r  using warm N2 gas (Fig. 4e11)e Because of t h i s  "precooling", very 

slow flow r a t e s  can be used i n  s e t t i n g  the  temperature, except a t  t h e  

extreme temperatures of t h e  range. I n  f a c t ,  the  rates a re  s o  low tha t  

a micrometer r egu la t ing  valve had t o  be used t o  accurately set t h e  gas 

pressure  (valve 1 i n  Fig. 4.11). A t  t hese  low flow ra tes ,  t he re  is 

neg l ig ib l e  gas-produced v ib ra t ion .  This v i b r a t i o n  is a l s o  somewhat 

damped due t o  contact  wi th  t h e  c o l l e c t o r  spr ing.  This  contact,  however, 

t ransmi ts  v ib ra t ions  t o  t h e  emi t t e r  due t o  t h e  bubbling of t h e  i n  

t h e  cold f inge r .  This v i b r a t i o n  produced considerable  noise  i n  t h e  EDC 

when LN2 was poured d i r e c t l y  i n t o  t h e  cold f inge r .  To overcome t h i s ,  

t h e  cold f i n g e r  was plugged with a s topper  wi th  two tubes  mounted i n  it 
(see Fig. 4.9). One tube feeds LN2 t o  the  cold f i n g e r  and the  second 

was used f o r  re turn ing  N2 gas and also c i r c u l a t e  t he  m2 when t h e  

f i n g e r  g e t s  cold enough. 

thereby suppressing the  bubbling t o  a l e v e l  where it d id  not cause 

add i t iona l  EDC noise .  It is important t h a t  t h e  tubes be constructed 

as shown i n  t h e  foreground of Fig.  4.12; namely, t h e  feed tube needs t o  

be longer  than  and have h a l f  t h e  i ,d .  of t h e  r e t u r n  tube. 

LN2 

This  produces a back pressure on the  LN2 

Cooling the  c o l l e c t o r  t o  LN2 temperature a l so  provides a cryo- 

pumping-.action on the  environment surrounding the  sample. Since t h e  

sample is  always as w a r m  or warmer than the  co l lec tor ,  the p robab i l i t y  

of adsorbing a l a r g e  enough amount of impur i t ies  on the  sample sur face  

t o  d i s t o r t  t h e  EDCs is very low, 

81 



3 .  

Since changes i n  EDCs occur over such a s m a l l  temperature range 

Measurement and Cal ibra t ion  of Temperature 

( i e e e 9  about 25'K), it is  very important t o  accura te ly  measure the  

sample temperature. 

t h e  thermocouples used f o r  measuring sample temperature were improperly 

i n s t a l l e d  i n  t h e  f lange ,  

f langes,  t h e  s t e p s  taken t o  accura te ly  measure temperature are reviewed 

i n  d e t a i l  here e 

It was found a t  the beginning of t h i s  s tudy tha t  

Since t h i s  s i t u a t i o n  may a l so  occur i n  o the r  

The c r u c i a l  f a c t  about thermocouples is t h a t  t he  vol tage measured 

is  c h a r a c t e r i s t i c  of t h e  d i f f e rence  between the measuring junc t ion  

temperature a t  t h e  po in t  of  measurement and the reference junc t ion  

temperature at t h e  poin t  where t h e  thermocouple wires terminate.  Since 

thermocouple m i l l i v o l t  c a l i b r a t i o n  t a b l e s  are usua l ly  r e fe r r ed  t o  e i t h e r  

0' or 25 C reference junct ions,  it is i q o r t a n t  f o r  t he  thermocouple 

terminat ion t o  be at a known, constant ambient. The thermocouyle i n  our 

f l ange  had been wired as i n  p a r t  (a) of Fig. 4.16. The terminal  block 

whose temperature served as  t h e  reference value was p a r t  of t h e  photo- 

emission f lange.  Due t o  t h e  heat  l o s ses  of  t h e  subs t r a t e  holder, when 

the  samples were e i t h e r  cooled o r  heated, t h e  te rmina l  block would a l so  

change temperature i n  t he  same sense. Thus, i f  t h e  meter readings were 

converted r e l a t i v e  t o  room temperatures, t h e  pred ic ted  temperature of 

a cooled sample would always be warmer than  t h e  ac tua l  value.  It was 

found tha t  such e r r o r s  were t y p i c a l l y  30°K a t  

ing an equivalent  cooling of t he  te rmina l  block. 

a re  c l e a r l y  unacceptable. The e r r o r s  were corrected by extending the  

chromel-alunel wire t o  t h e  f lange feed-throughs and by using t h e  same 

ma te r i a l s  f o r  cables  from the feed-throughs t o  the  measuring device as 

-shown i n  p a r t  (b) of t h e  f i g u r e ,  

nec tors  a re  not made of t h e  thermocoqple mater ia l ,  s ince  they a re  not 

terminat ions of  t hese  mater ia ls ,  no e r r o r  is introduced by them if  both 

feed-throughs (or connectors) a r e  a t  t h e  same temperature. We ac tua l ly  

used an Omega model CJ-K thermocouple compensator before  t h e  meter. 

This device e l e c t r o n i c a l l y  s e t s  t h e  reference junc t ion  vol tage t o  t'nat 

corresponding t o  0 C t o  w i t h i n  5 1 / 2 O C  f o r  ambient temperatures from 

0 

LN2 temperature r e f l e c t -  

Such absolute e r r o r s  

Even though feed-throughs and con- 
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MEASURING JUNCTION 

I 

VACUUM 
CHAMBER 

FIGURE 4.16. Schematic diagram of the  thermocoqple c i r c u i t  used i n  
(a) previous work, and (b)  t h e  present  work. 

15 t o  3 5 O C .  

near  the  meter could drop s u b s t a n t i a l l y  due t o  the  proximity of t h e  

cold gas output of t he  f lange .  

(part (b),  Fig. 4.16) no e f f e c t s  due t o  t h e  cooling of t h e  te rmina l  

block were seen, and a temperature of p r e c i s e l y  77 K was measured 

( see  t h e  meter i n  Fig. 4.13(a)). 

This was a u s e f u l  addi t ion  s ince  the  ambient temperature 

With t h i s  improved thermocouple c i r c u i t  

0 

Because t h e  thermocouple was a c t u a l l y  mounted i n  the  s u b s t r a t e  

holder,  t he re  was some concern t h a t  t h e  temperature of t he  subs t ra te ,  

which was only he ld  t o  t h e  holder  by fou r  wires, might be a t  a d i f -  

f e r e n t  temperature a To c a l i b r a t e  the  sample teFperature,  a thermocouple 

was mounted i n  t h e  cen te r  of a s u b s t r a t e  as shown i n  Fig. 4.17. By 



FIGURE 4.17. Photograph of a subs t r a t e  wi th  a thermocouple mounted 
i n  i i s  center  t o  c a l i b r a t e  t he  subs t r a t e  holder  thermo- 
couple e 

comparing t h i s  thermocouple reading t o  t h e  holder  thermocouple (shown i n  
Fig.. 4.10) value, it was found t h a t  t h e r e  is some heat  t r a n s f e r  problem 

between t h e  two measurement p o i n t s e  While the  subs t r a t e  was usually 
3 O K  w a r m e r  than  t h e  holder  when the  gas  was turned of f ,  it would continue 

t o  cool  i n i t i a l l y  as the holder  warmed u.p. 

ment period, t h e  holder  (now 8OK warmer) would be warmer than the  subs t r a t e .  

A t  t he  end of the M)C measure- 
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I n  general ,  t h e  average substrate and holder  temperatures were t h e  same 

over t h e  EDC measurement time wi th  t h e  a c t u a l  range of temperatures of 

t h e  s u b s t r a t e  being about h a l f  t h a t  of t h e  holder .  

c e r t a i n t y  quoted f o r  t h e  sample temperature of + 4 O K  is a very  conserva- 

tive, worst  case es t imate  

Thus, t h e  un- 

The cool ing of t h e  f l ange  caused by sample cool ing not only caused 

erroneous the rmocoq le  readings i n  e a r l y  measurements, it a l s o  causes 

water vapor condensation on t h e  f lange  e l ec t rodes .  This was remedied 

q u i t e  e f f i c i e n t l y  by surrounding t h e  t o p  of t h e  f lange  and t h e  e lec-  

t r o n i c s  with a sea l ed  p l a s t i c  bag (see Fig.  4.13(a)) and blowing d ry  

gas a t  l e s s  t han  1 ps i  p re s su re  i n t o  it (see Fig. 4.13(b)). 
used a neg l ig ib l e  amount of gas, produced no v i b r a t i o n a l  noise  i n  t he  

e l e c t r o n i c s  leads,  kept t h e  e l ec t rodes  d r y  inde f in i t e ly ,  and requi red  no 

major modif icat ions of t he  e l e c t r o n i c s  conta iner .  

N2 
This process  

Using a l l  t h e  newly developed spparatus  and procedures descr ibed 

i n  t h i s  sect ion,  photoemission could be  measured a t  temperatures ranging 

cont inuously from roGm t o  LN2 

f a c t o r  of two i n  t h e  EDC noise .  

va lues  without  an increase of even a 

D e  Photoemission Measurement 

A s  has been eqphasized throughout t h i s  chqpter, t h e  measurement of 

photoemission EDCs has presented  many requirements on a l l  t h e  experi-  

mental  phases of t h i s  work from t h e  vacuum t o  cool ing t h e  samples. I n  

t h i s  sec t ion ,  t h e  r e s t r i c t i o n s  on EDC r e s o l u t i o n  imposed by t h e  appara- 

tus and t h e  measurement parameters a re  d iscussed  following a review of 

t h e  b a s i c  p r i n c i p l e s  of t h e  measurement of EDCs and y i e ld .  The e l e c t r i -  

c a l  c i r c u i t r y  used f o r  measuring 'photoemission by t h e  s tandard a-c 

technique is shown schematical ly  i n  Fig. 4.19. The a c t u a l  c i r c u i t r y  

used i n  these  s t u d i e s  and t h e  d e t a i l e d  methodology on the  photoemission 
measurements was mostly developed by R. C.  Eden. 999100 

be inves t iga t ed  serves  as the  emi t t e r .  It is  surrounded by a m e t a l .  

cy l inde r  t h a t  i s  used t o  c o l l e c t  t h e  e l e c t r o n s  photoemitted by inc ident  

monochromatic l i g h t  which e n t e r s  t h e  chamber through a LiF window, 
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FIGURE 4.18. Schematic diagram of t h e  photoemission measurement 
c i r c u i t .  

a l l  of t h e  photo- vR b i a s ing  t h e  c o l l e c t o r  s u f f i c i e n t l y  pos i t ive ,  

emit ted e l ec t rons  a r e  co l l ec t ed  and t h e  measured ex te rna l  current ,  

is p r o p o r t i o n d  to t h e  y i e ld .  

cur ren t  measured from a c a l i b r a t e d  C s  Sb 

Y , of photoemitted e l ec t rons  pe r  inc ident  photon. Correct ing f o r  

I , 
Comparing t h i s  current  wi th  t h e  photo- 

tube gives  the  quantum yie ld ,  
3 

sample r e f l e c t i v i t y ,  we have t h e  absolute quantum yield,  of photo- 

emit ted e l ec t rons  p e r  absorbed photon. The C s  Sb tube used i n  these  

s t u d i e s  (F-7) was c a l i b r a t e d  to +_4$ using new techniques described i n  

Appendix C 8  

3 

If t h e  c o l l e c t o r  i s  biased negative, only those e l ec t rons  

which have energies  g r e a t e r  than t h e  

co l lec ted .  By superimposing a small  

ing voltage,  VR , t h e  a-c current ,  

96 

re ta rd ing  p o t e n t i a l  d i f fe rence  a re  

, on t h e  r e t a rd -  a-c s ignal ,  dvR 
d I  , flowing i n  t h e  ex te rna l  



c i r c u i t  w i l l  be  p ropor t iona l  t o  t h e  number of e l ec t rons  having an energy 

equal  t o  t h e  r e t a r d i n g  p o t e n t i a l  d i f f e rence .  Thus, by sweeping t h e  

r e t a r d i n g  vo l t age  and measuring t h e  a-c cu r ren t  t h e  d i s t r i b u t i o n  i n  

energy of t h e  photoemitted e l e c t r o n s  is measured d i r e c t l y .  One must 
cons ider  t h e  l i m i t a t i o n s  on t h e  r e s o l u t i o n  s e t  by both  t h e  apparatus 

and t h e  measurement. 

One of t h e  major l i m i t a t i o n s  of t h e  apparatus is t h a t  due t o  t h e  
geometry of t h e  photodiode. DiStefano and Pierce  have s tud ied  t h i s  i n  
d e t a i l .  

he ight  was 0.12 eV f o r  a threshold  p i ece  of s t r u c t u r e  a t  10.2 eV f o r  

AgBr-11-D Assuming a sharp threshold  

function, t h i s  is a good measure of t h e  geometr ical  r e so lu t ion .  However, 

it should be  r e c a l l e d  t h a t  t h i s  r e s o l u t i o n  becomes worse at h igher  f i n a l  

s t a t e  energ ies  e A s  shown on t h e  schematic, a 98.0% t r ansmi t t i ng  

screen, made from 0.001" diameter wire arranged i n  a O.OIOf '  spaced square 

matrix, was p laced  over t h e  f r o n t  of t h e  c o l l e c t o r  t o  make t h e  f i e l d s  

more s p h e r i c a l  around t h e  e m i t t e r  and thus  a i d  t h i s  r e s o l u t i o n  ( t h e  

sc reen  is p i c t u r e d  i n  Fig. 4.14). 
film is evaporated on t h e  in s ide  of t h e  c o l l e c t o r  each pmpdown t o  pro- 

duce a more uniform work func t ion .  

The narrowest peak width measbred a t  90% of t h e  maximum 

a t  80°K (see Fig. 4.20(a) below) e 

A s  noted i n  s e c t i o n  B, a f r e s h  m e t a l l i c  

The apparatus e x t e r n a l  t o  t h e  f lange  a l s o  e f f e c t s  t h e  EDCs. For 

example, t h e  f i e l d s  from e x t e r n a l  magnets can d i s t o r t  t h e  energy distri-  

bu t ions .  A t  t h e  sanrple pos i t i on ,  0.55 gauss was measured wi th  t h e  

Redhead gauge and ion pump magnets i n  place compared t o  0.4 gauss with- 

out them (ice., t h e  e a r t h ' s  f i e l d )  e 

t h i s  40% increase  i n  ambient magnetic f i e l d .  

advantage of t h e  NRC Orb-ion pump over t h e  large,  magnet-laden ion pumps. 

However, t h e  e l e c t r o n  emission of t h e  Orb-ion l eads  t o  EDC noise and is  

turned  of f  during t h e  measurement period. The NRC 554 Redhead gauge is  

l e f t  on and serves  as a 1 l/s ion p m p  t o  maintain t h e  chamber pressure  

wi th in  a f a c t o r  of two of t h e  base p re s su re  wi th  t h e  Orb-ion running. 

The EDCs showed no changes due t o  

This low f i e l d  is one main 

There a re  parameters of t h e  measurement which produce o the r  l i m i t a -  

t i o n s  on t h e  r e so lu t ion .  For example, both t h e  unce r t a in ty  i n  t h e  energy 

of t h e  l i g h t  and t h e  amplitude of t h e  a-c voltage, 

broaden t h e  EDC s t r u c t u r e .  
dVR , art i f  i c  i a l l y  

A s  d iscussed by Eden," t h e  t o t a l  photon 



energy uncer ta in ty  and t h e  a-c peak-to-peak vol tage both overestimate 

the  t r u e  uncer ta in ty  but  a r e  good f o r  comparison to each o ther ,  
t o t a l  photon energy spread was ca l cu la t ed  f o r  t h e  McPherson 225 mono- 

chrometer with equal  input and output s l i t  s e t t i n g s  as a func t ion  of 

photon energy. 

spread. This net  reso lu t ion ,  which r e s u l t e d  i n  negl ig ib le  EDC noise, 

was usua l ly  from 0.10 eV t o  0.15 eV f o r  a l l  s e t s  of s i l v e r  ha l ide  EDCs. 

Since t h i s  i s  an overest imate  of t h e  t r u e  uncertainty,  these  values 

represent  q u i t e  a good r e s o l u t i o n  r e l a t i v e  to o the r  experimental e r r o r s -  

The sweep of t h e  r e t a rd ing  vol tage produces a ne t  s h i f t  i n  t he  pos i t i on  

of t he  EDCs because of the  time constant  of t he  system. A s  w i l l  be 

seen i n  Fig. 4.19, t h i s  s h i f t  is only about 0.06 eV. Thus, t he  un- 
c e r t a i n t y  i n  a peak pos i t i on  due t o  the  sweeping vol tage is -t 0.03 eV, 

we l l  w i th in  the  o the r  r e so lu t ions  discussed above. 

The 

The a-c peak-to-peak value was always s e t  equal  to t h i s  

The method of analyzing t h e  EDCs can a c t u a l l y  introduce a s h i f t  of 

t h e  energy s c a l e  by more than  any of these  r e so lu t ion  l i m i t s .  Since the  

work func t ions  of t he  c o l l e c t o r  could not be measured, t h e  absolute  

energy sca l e  was s e t  by f i t t i n g  a s t r a i g h t  l i n e  of u n i t  slope t o  t h e  

highest  values of a p l o t  of t he  EDC l ead ing  edge ex t rapola t ions  versus  

htr a This ex t r apo la t ion  is  taken by extending t h e  s t r a i g h t  l i n e  por- 

t i o n  of the  edge before  i t s  s lope is  a maximum. The remaining t a i l  on 

the  EDC a f t e r  t h i s  s lope maximum is usua l ly  l e s s  than 0.2 eV longer  than  

t h e  in t e rcep t  of t h i s  ex t r apo la t ion  and t h e  EDC base l ine .  Even i f  using 

t h e  ex t rapola ted  edge were a comFlete e r ror ,  t h i s  would merely cause 

less t h a n  a 0.2 eV s h i f t  of a l l  t h e  s t r u c t u r e  t o  lower energy. It should 

be noted, however, t h a t  t h i s  EDC t a i l  is be l ieved  due to experimental 

broadening and not c h a r a c t e r i s t i c  of t he  e l e c t r o n i c  s t a t e s l  Thus, t h e  

procedure of s e t t i n g  the  energy s c a l e  probably introduces l e s s  than 

0,1 eV e r r o r  i n  the  r e s u l t s .  
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FIGURE 4.19. Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photon) f o r  e l ec t rons  photoemitted 
from AgCl at temperatures ranging across t h e  curves 
from 77 +8i0K (-) and 95 +77 K (-e-) f o r  a photon 
energy of 11.4 eV. 
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E. E f fec t  of Parameters on S i l v e r  Halide Photoemission 

I n  t h i s  sect ion,  EDC and y i e l d  d a t a  is presented t o  i l l u s t r a t e  t h e  

e f f e c t s  on t h e  s i l v e r  ha l ides  of parameters ranging from time t o  a i r  

exposure. Since so  much emphasis i n  t h e  l i t e r a t u r e  has been placed on 

t h e  y i e l d  and photoemission threshold,  y i e l d  da t a  has been included. 

For t h e  most pa r t ,  t he  d a t a  i s  se l f -explana tory  and no extensive d i s -  

cussion will be given. Only AgBr and AgCl r e s u l t s  w i l l  be presented 



here.  The parameters a f f e c t i n g  AgI photoemission a r e  defer red  t o  

Chstpter I X .  

A s  noted i n  t h e  l as t  sect ion,  t h e  sweeping of t h e  r e t a rd ing  vol tage  

s h i f t s  t h e  e n t i r e  EDC because of t h e  time cons tan t  f o r  t h e  system t o  

respond. 

a r e  s h i f t e d  by only 0.06 eV from scanning i n  t h e  two d i r ec t ions .  

means, t h e  p o s i t i o n  of t h e  peak is  only unce r t a in  by 0.03 eV which is 

much l e s s  than  t h e  o t h e r  e r r o r s  i n  t h e  EDCs. This f i g u r e  a l s o  i l l u s -  

t r a t e s  t h a t  t h e  curves are  not s i g n i f i c a n t l y  e f f e c t e d  by the  8OK warming 

which occurs during t h e  scan. Since t h e  scan d i r e c t i o n s  a re  d i f f e r e n t  

f o r  t h e  two i l l u s t r a t e d  curves, t h e  temperature of t hese  two EDCs d i f f e r  

by 8OK at each end. 

This i s  i l l u s t r a t e d  i n  Fig.  4.19. A s  can be seen, t h e  peaks 

This 

The d a t a  was reproducible among t h e  samples measured. The most 

s e n s i t i v e  t e s t  of t h i s  is a comparison of t h e  temperature EDCs. 
A number of t h e s e  a r e  presented  i n  p a r t  (a) of Fig. 4.20 for AgBr . 
The two s e t s  of curves are  ind iv idua l ly  normalized t o  t h e i r  own y i e l d  

and have t h e i r  absolu te  energy s c a l e s  r e f e r r e d  t o  t h e  valence band 

maximum, E.v , independently. The agreement i s  r e a l l y  exce l l en t  

e s p e c i a l l y  i n  t h e  p o s i t i o n  of t he  EDC s t r u c t u r e .  I n  pa r t  (b), t h e  

AgBr y i e l d s  from t h r e e  t h i n  f i l m  samples a r e  compared. A s  can be seen 

t h e  s a t u r a t i o n  y i e l d  and th re sho ld  regions a r e  q u i t e  reproducible.  The 

t a i l  below 7.5 eV i n  t h e  y i e l d  w i l l  be  discussed below, EDCs and y i e l d  

from. r ep resen ta t ive  A g C l  samples a r e  presented  i n  Fig. 4.21e A s  i n  

t h e  case  of AgBr t h e  data is  q u i t e  reproducible among s m p l e s .  

LNz 

The d a t a  i s  a l s o  reproducible fol lowing numerous temperature cycles 

between room and l i q u i d  n i t rogen  values.  

f o r  AgBr . The number of times t h e  sample was cooled t o  90 K i s  

ind ica t ed  i n  parentheses.  Since t h e  two curves taken 19 cycles  apa r t  

a r e  independently normalized, t h e  s t a b i l i t y  of t h e  y i e l d  is a l s o  seen 

t o  be  q u i t e  good, The increased s t r e n g t h  of t h e  t r a i l i n g  peak is  indica- 

t i v e  of a threshold  func t ion  which has s l i g h t l y  sharpened. A g C l  can 

a l s o  be seen t o  be unaffected by numerous sample coolings i n  p a r t  (a)  

of Fig. 4.23. 

This is shown i n  Fig. 4.22 
0 
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FIGURE 4.20( a) Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (pe r  inc ident  photon) f o r  e l ec t rons  
photoemitted from two AgBr samples a t  80°K f o r  
photon energ ies  of 9.6 through lle8 eV. 



I 

FIGURE 4.20(b) e Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  
y i e l d  of e l ec t rons  photoemitted p e r  absorbed photon 
from th ree  AgBr samples at 295'K. 
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FIGURE 4.21(a) e Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) for e lec t rons  
photoemitted from two A g C l  samples a t  2 S 0 K  for 
photon energ ies  of loe? and 11.8 eV. 
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FIGURE 4.22. Comparison of energy d i s t r i b u t i o n s  normalized 
t o  quantum y i e l d  (per  inc ident  photon) f o r  
e l ec t rons  photoemitted f ive  days and eighteen 
cool ing cyc les  % p a r t  from AgBr a t  9OoK f o r  a 
photon energy of 10.2 eV. 

, 
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FIGURE 4 .23(a) .  Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc ident  photon) for e lec t rons  
photoemitted t h i r t e e n  days and nine cool ing cyc les  
apart from A g C l  a t  9OoK for a photon energy of 
11.4 eV. 

These las t  two f i g u r e s  a l s o  i l l u s t r a t e  t h e  s t a b i l i t y  of t h e  samples 

wi th  t i m e .  Over a pe r iod  of a month no s i g n i f i c a n t  changes i n  EDCs 

occurred for e i t h e r  AgBr o r  A g C l  .. A s  discussed above, if  photo- 

l y t i c  decomposition was s i g n i f i c a n t  i n  these  t h i n  films, one would 

expect a slow degradat ion of t h e  EDCs wi th  increas ing  exposure t o  W 

rad ia t ion .  Thus, t h e  d a t a  i s  cons i s t en t  wi th  t h e  conclusion t h a t  l i g h t  

induced chemical. r eac t ions  were not s i g n i f i c a n t  for t h e  samples s tud ied .  

I n  part  (b) o f  Fig.  4.23, t h e  A g C l  y i e l d  s t a b i l i t y  over  a month is 



AgCl- 
295" K 

10/31/69 
e 11/24/69 

FIGURE 4.23(b) Comparison of the  s p e c t r a l  d i s t r i b u t i o n s  of the  
y i e l d  of e l ec t rons  photoemitted p e r  absorbed photon 
from A g C l  at 295'K twenty-four days apa r t .  
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examined Ln d e t a i l ,  

period, even in t h e  threshold  region, shows both t h e  s m p l e  s t a b i l i t y  

and t h e  accuracy of t h e  y i e l d  measurement, For example, t h e  two LiF 

windows on t h e  C s  Sb tube and vacuum chamber could be reproducibly 

cleaned. 

The coincidence of t h e  d a t a  a f t e r  such a long time 

3 

As noted above, t h e  photoemission from t h e  very t h i n  films s tud ied  

(200 - 400 8) was t h e  same as t h a t  measured from very t h i c k  films. This 

i s  i l l u s t r a t e d  f o r  AgBr i n  Fig. 4.24. Though t h e r e  a r e  s l i g h t  changes 

i n  he igh t  i n  t h e  EDC s t r u c t u r e  [ p a r t  (a)] ,  a l l  t h e  s a l i e n t  f e a t u r e s  of 

t h e  d a t a  are  independent of t h i ckness .  Neglecting t h e  low energy t a i l  

f o r  a moment, t h e  y i e l d  is  a l s o  seen  t o  be r e l a t i v e l y  th ickness  inde- 

pendent i n  p a r t  (b). AgBr-11-C was a c t u a l l y  very much th inne r  than  t h e  

265 1 measured on t h e  th ickness  monitor. 

temperature f o r  t h i s  film was nea r ly  at t h e  evaporat ion temperature of 

AgBr Thus, only a very s m a l l  amount was a c t u a l l y  deposited.  The 

lower s a t u r a t i o n  y i e l d  value f o r  t h i s  sample is ind ica t ive  of t h e  e l ec -  

t r o n  escape depth be ing  g r e a t e r  t han  t h e  film th ickness .  The th ickness  

dependence of t h e  low energy y i e l d  t a i l s  (htr < 7.5 eV) suggests s t rong ly  

This i s  because t h e  s u b s t r a t e  

t h a t  t h i s  photoemission i s  produced by  e l e c t r o n s  photoexcited i n  t h e  

s i l v e r  s u b s t r a t e  and then  emitted through t h e  s i l v e r  ha l ide  f i l m  i n t o  

vacuumo Since t h e s e  hot  e l ec t rons  s c a t t e r  i n  t h e  film, t h e i r  measured 

y i e l d  w i l l  decrease wi th  increas ing  f i l m  th ickness .  This i s  c e r t a i n l y  

the  case  f o r  t h e  s t r e n g t h  o f  t h e  tai ls  i n  Fig. 4.24(b) and can a l s o  be  

seen  i n  t h e  AgBr y i e l d  d a t a  i n  F i g o  &.20(b). Since t h i s  y i e l d  i s  at 

l e a s t  two order of magnitude l e s s  t han  t h e  fundamental yield,  i t s  e f f e c t  

on t h e  EDCs i s  neg l ig ib l e  except i n  t h e  threshold  region. This i s  

i l l u s t r a t e d  i n  Fig. 4.27. I n  add i t ion  t o  t h e  fundamental AgBr photo- 

emission, t he re  i s  a t a i l  t o  higher energ ies  f o r  very t h i n  f i lms  at 

these  low photon ene rg ie s  near t h re sho ld  where t h e  fundamental EDC 
magnitude is reduced by more than  an order  of magnitude [compare the  

v e r t i c a l  s c a l e  of t h i s  f i g u r e  t o  t h a t  of Fig. 4.24(a)] e 

dependence of t h i s  d a t a  can be seen by comparing the  two 7,4 eV EDCs. 
This s u b s t r a t e  photoemission through sample 11-C is e s s e n t i a l l y  hV 

independent as compared t o  t h e  fundamental AgBr emission which i s  

The th ickness  



0 c 
9.6 eV 

FIGURE I+ -24 (a) e Cornparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) for e lec t rons  
photoemitted from t h i c k  and t h i n  AgBr samples 
a t  2S0K for photon energ ies  of 9.6 and 11.4 eV. 
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FIGURE 4 ,24 (b )*  Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  
yield of e l ec t rons  photoemitted p e r  absorbed 
photon from t h i c k  and t h i n  AgBr samples a t  2gSJOK. 
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FIGURE 4.23 e Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y ie ld  (per inc ident  photon) f o r  e l ec t rons  photoemitted 
from two AgBr samples a t  2B°K f o r  photon energies  
of 7,4 and 7.6 eV. 

10 1 



o f f - s c a l e  at 7-6 eV. 

A g C l  e That is, t h e  fundamental photoemission is th ickness  independent 

f o r  t h i n  and very t h i c k  films as seen  i n  Fig.  4.26. 

The same th ickness  dependence was measured for 

The higher  th reshold  

FIGURE 4 2 6 -  Comparison of  energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per inc ident  photon) f o r  e l ec t rons  photoemitted 
from t h i c k  and t h i n  A g C l  samples a t  2930K f o r  a photon 
energy of 10.2 eV. 

f o r  t h e  t h i c k  sample was due t o  i t s  depos i t ion  on Pt  and not i t s  th i ck -  

ness as w i l l  be  discussed below. S imi la r  t o  AgBr , photoemission from 

very t h i n  f i lms  shows an add i t iona l  EDC t a i l  t o  higher  energ ies  due t o  
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s u b s t r a t e  photoemission, and t h i s  decreases  wi th  increas ing  th ickness  

as shown i n  Fig.  4.27. The 150 2 measured f o r  t h e  th ickness  of sample 

0 

FIGURE 4.27. C o q a r i s o n  of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photon) f o r  e l ec t rons  photoemitted 
from two AgCl 
7.7 eV. 

samples a t  295'K f o r  a photon energy of 

I - A  is probably erroneous because the  quar tz  c r y s t a l  monitor used 

exh ib i t ed  frequency i n s t a b i l i t i e s .  

The th ickness  independence of t h e  fundamental s i l v e r  ha l ide  photo- 

emission ( i . e m 9  Figs .  4.24(a) and 4.26) ind ica t e s  t h a t  t h e  t h i n  films 



s tud ied  were v i r t u a l l y  s t r a i n - f r e e .  

were postulated,  it must occur at room temperature s ince  t h e  EDCs 
sharpen dramat ica l ly  upon cool ing (e.g.l Fig. 2.6). Mowever, one would 

expect such s t r a i n  e f f e c t s  t o  be r e l i eved  i n  t h i c k  samples s ince  

photoemission takes  place over such a s m a l l  depth near the  surface. 

Since the  room temperature EDCs a r e  thickness  independent, t h e  e f f e c t s  

of t h i n  f i l m  s t r a i n ,  i f  t h e r e  a re  any, a r e  negl ig ib le .  This is  con- 

s i s t e n t  w i t h  Car rera ' s  f ind ings  t h a t  no dramatic sharpening i n  t h e  

o:ptical  d a t a  occurs when s p e c i a l  precaut ions a r e  taken t o  form low- 

I f  strain-broadening of t h e  EDCs 

102 

s t r a i n  s i l v e r  ha l ide  films. 45 

To determine if any of t h e  EDC c h a r a c t e r i s t i c s  were dependent on 

t h e  s u b s t r a t e  mater ia l ,  A g C l  was deposi ted on both Ag and Pt . 
The r e s u l t s  shown i n  Fig.  4.28 show t h a t  t h e  s a l i e n t  f ea tu re s  of the 

d a t a  a r e  unaffected.  It is  i q p o r t a n t  t o  r e a l i z e  t h a t  t h e  EDCs i l l u s -  

s t r a t e d  i n  p a r t  (a) a r e  independently normalized. The only e f f e c t  i s  

FI'GURE: 4.28 ( a )  e Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photon) f o r  e l ec t rons  photoemitted from AgCl on 
Ag and Pt s u b s t r a t e s  a t  295'K f o r  a photon energy of 11.8 eV. 
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FIGURE 4,2Ej(b). Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e l ec t rons  photoemitted p e r  absorbed photon from A g C l  on Ag and 
Pt s u b s t r a t e s  a t  295°K. 



a h igher  and less well-defined photoemission threshold  f o r  t h e  sample 

on t h e  Pt s u b s t r a t e .  

Table IV.Z), t h i s  may be  r e l a t e d  t o  t h e  su r face  c l ean l ines s  of  t h e  

metals s i n c e  Pt  is very d i f f i c u l t  t o  heat-clean properlylo3 compared 

Since t h e  f i lm o r i e n t a t i o n s  a re  t h e  same (see 

t o  Ag  

Since t h e  e p i t a x i a l  growth of t h e  t h i n  f i l m  is dependent on t h e  

it was important to determine if  T s  t e m p  r a t u r e  of t h e  subs t ra te ,  

t he  EDCs f o r  films grown at  d i f f e r e n t  temperatures would show any s ign i -  

f i c a n t  d i f f e rences .  Since t h e  i d e a l  growth temperatures were repor ted  

to be from just above room temperature to around 150 C,” t h e  range of 

22 t o  175 C was s u f f i c i e n t  t o  t e s t  f o r  any e f f e c t s ,  The results shown 

i n  Fig.  4.29 ind ica t e  t h a t  i n  t h i s  range, t h e  substrate temperature 

during growth does not s i g n i f i c a n t l y  e f fec t  t h e  EDCs. The need t o  

double t h e  he ights  of t h e  

th inness  of t h e  sample as discussed above [see  Fig.  4.24(b)] 

0 

0 

T s  = lm°C EDCs was necess i t a t ed  by t h e  very 

I n  an attempt to perhaps sharpen EDC s t ruc tu re ,  t h e  films were 

annealed i n  t h e  vacuum chamber fol lowing depos i t ion .  A s  seen i n  F igo  

4.30, t h e  only e f f e c t  of anneal ing f o r  12 hours a t  100°C and then  23 

hours at 150°C i s  to s l i g h t l y  reduce t h e  y i e l d .  The f e a t u r e s  of t he  

EDC s t r u c t u r e  are not s i g n i f i c a n t l y  a f f ec t ed .  

I n  an e f f o r t  to determine the  na ture  of t h e  sur face  contamination 

which caused t h e  d i f f e rences  between t h i s  and previous work, t h e  chamber 

was opened to t h e  air  f o r  22 hours and then  re-evacuated to simulate 

t r a n s f e r  of a prepared sample through a i r  to t h e  measurement f lange .  

A s  can be  seen i n  Fig.  4.31, t h e  EDC t h re sho ld  is s l i g h t l y  reduced 

[ p a r t  (a ) ]  and t h e  y i e l d  onset  has a b i t  smaller s lope  [part  (b) ] ,  

Though t h e  changes a r e  i n  t h e  proper  d i r ec t ion ,  t hese  a i r  induced e f f e c t s  

are not near ly  l a r g e  enough to expla in  the  large discrepancies  between 

t h i s  d a t a  and t h e  previous s t u d i e s  discussed i n  t h e  last  chapter .  

The depth i n t o  t h e  valence band which can be probed with high 

vacuum photoemission is  l i m i t e d  by t h e  cu to f f  of t h e  LiF chamber 

window and t h e  photoemission threshold ,  To increase  t h i s  energy range, 

an a t t e m p t  was made t o  lower t h e  e l e c t r o n  g f i n i t y  with a sur face  l a y e r  

of cesium as has been success fu l  with o the r  s o l i d s  i n  t h e  pas t .  99 The 
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FIGURE 4.29, C o q a r i s o n  of energy d i s t r i b u t i o n s  normalized to quantum 
y i e l d  (:per inc ident  photon) f o r  e l ec t rons  photoemitted from 
samples deposi ted at four  d i f f e r e n t  s u b s t r a t e  ternperatures, 
a t  29OK f o r  photon energies  of 9.6 through 11.8 eV. 

AgBr 

Ts .9 



FIGURE 4 3 0 (  a) Comparison o f  energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photon) f o r  e l ec t rons  photoemitted 
from a A g C l  sample before  and a f t e r  each of -two 
anneal ing t rea tments  at 2B°K for a photon energy of 
11.2 eV. 



FIGURE 4,30(b). Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e l e c t r o n s  photoemit ted p e r  i n c i d e n t  photon from a Aggl sample 
b e f o r e  and a f te r  each of two annea l ing  t r e a t m e n t s  a t  293 K. 



FIGURE 4 a( a) Com'parison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  ( p e r  inc ident  photon) for e lec t rons  photoemitted 
from a AgCl sample before  and a f t e r  air ex.posure 
a t  293OK f o r  a photon energy of 11,2 el?. 
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FIGURE &.3l(b) .  Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e l ec t rons  photoemitted p e r  inc ident  photon from a A g C l  satqle 
before  and after a i r  exposure a t  295OK. 
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r e s u l t s  a re  shown i n  Fig.  4.32. Though t h e  threshold  is  lowered by 4 
and 7 C s  exposures [part (a)] ,  t h e  e n t i r e  cha rac t e r  of t h e  EDC s t ruc -  

t u r e  i s  changed i n  t h e  process  [ p a r t  (b)]  e It i s  c l e a r  from these  

curves t h a t  t h e  cesium has reac ted  with t h e  AgCl thus destroying 

the AgCl f e a t u r e s  of t he  da t a ,  The LFF window was removed t o  probe 

deeper i n t o  t h e  valence band ( see  Chapter V I )  but t h i s  could only be 

done a t  room temperature.  The d e t a i l e d  temperature dependence of t h e  

s i l v e r  ha l ide  photoemission t o  be discussed next was thus  l imi t ed  t o  an 

energy range of 4.7 eV, 4.2 eV, and 5.2 eV f o r  AgBr , AgCl , and 

AgI r e spec t ive ly  . 
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FIGURE ke32(a ) .  Corqarison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e l ec t rons  photoemitted p e r  inc ident  photon from a AgCl sm,ple  
before  and a f t e r  each of two cesium t rea tments  a t  295'K.. 



FIGURE 4.32 (b) Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) f o r  e l ec t rons  
photoemitted from a AgCl sample before  and a f t e r  
each of two cesium treatments  a t  2 B ° K  for a photon 
energy of 11.4 eV. 
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. Ve TKE HYBRIDIZED HALOGEN 'p-DERIVED ELECTRONIC V U N C E  STATES OF 

AgBr and A g C l  

104 The AgBr and A g C l  t e m p  r a t u r e  dependent photoemia s ion data 

w i l l  be examined i n  de t a i l  i n  t h i s  chapter .  

p r e s e n t a t i o n  of  t h e  data,  t h e  dynamic hybr id iza t ion  model w i l l  be  xpplied 

to t h e s e  ha l ides .  It w i l l  be s h o w  t h a t  such a mechanism p r e d i c t s  energy 

l eve l  broadening and t h e  temperature dependence of such broadening which 

is of t h e  same order  of magnitude as t h a t  observed i n  t h e  EDCs. This is 

done by us ing  our  c a l c u l a t i o n s  of t h e  t igh t -b inding  AgCl energy bands 

and by  us ing  t h e  AgBr and A g C l  p ressure  dependent absorpt ion da ta .  

These resul ts  can then  be used as a method to determine t h e  atomic o r i g i n  

of t h e  states to which t h e  EDC s t r u c t u r e  c o r r e l a t e s .  It should be re- 

c a l l e d  t h a t  s ince  t h e  energy states of  t hese  two ha l ides  are so  similar, 

they  can be d iscussed  interchangeably,  t o  f irst  order .  I n  addition, t he  

s a l i e n t  features o f  t h e  EDC data are t h e  same f o r  bo th  ha l ides .  There- 

fore ,  for c l a r i t y  t h e  experimental  r e s u l t s  f o r  one of t hese  s o l i d s  is 

d iscussed  f u l l y  and similar d a t a  f o r  t h e  o the r  ha l ide  is presented by 

c o q a r i s o n  to it. 

Following a d e t a i l e d  

396 

A. Data - 
The complete photoemission d a t a  f o r  AgBr and AgCl are presented 

i n  t h i s  s e c t i o n  f o r  t h e  photon energy range where t h e  temperature depen- 

dent f e a t u r e s  are most s t r i k i n g .  The d iscuss ion  w i l l  only enqhasize 

these  f e a t u r e s  (I I n  p a r t i c u l a r ,  t h e  temperature dependence of t h e  width 

of t h e  s t r u c t u r e  a t  some fixed f r a c t i o n  o f ' t h e  height  w i l l  be seen to 

be t h e  most meaningful parameter.  The he ights  of  t h e  EDCs must be 

coqpared with caut ion  s ince  they  are normalized r e l a t i v e  to t h e  incident  

r a t h e r  t han  t h e  absorbed photon flux. A s  po in ted  out i n  Chgpter 111, 

t h i s  is  due t o  t h e  l a c k  of low temperature o p t i c a l  data i n  t h i s  photon 

energy range. The behavior of t h e  p o s i t i o n  and he ight  of EDC s t r u c t u r e  

with photon energy v a r i a t i o n  is discussed i n  Chapter V I I I .  



The AgBr EDCs from 3 e 3  e V  through 9..6 eV a r e  presented  at both 

A t  t h e  low photon room and l i q u i d  n i t rogen  temperatures i n  Fig.  5.1. 
energies ,  t h e  EDCs sharpen only s l i g h t l y  upon cooling. The dramatic 

change occurs when a peak emerges on t h e  l ead ing  edge of t h e  curve,  

Note how dramatic t h e  onset  is over such a s m a l l  energy range of 9.0 t o  

9,Z eV. It is important t h a t  t h e  energy range from the  f irst  appearance 

of  t he  new s t r u c t u r e  t o  i t s  emergence as a peak is much smaller a t  80 K 

than  a t  room temperature.  Consis tent  with t h i s ,  t h e r e  zppears to be a 

much g r e a t e r  s t r e n g t h  i n  t h i s  lead ing  peak at low temperatures as evi- 

denced by  t h e  reversal  i n  t h e  re la t ive he igh t s  of t h e  two peaks. Both 

of t h e  peaks appear sharper  and more well-defined s ince  t h e  peak-to- 

v a l l e y  r a t i o s  a r e  g r e a t l y  increased and t h e  widths a r e  reduced upon 

cool ing.  These e f f e c t s  are a l l  c h a r a c t e r i s t i c  of a l a r g e  change i n  t h e  

valence s t a t e s  from which t h e s e  e l ec t rons  were photoexc i t e d ,  

0 

Such changes i n  EDCs are a l s o  seen i n  Fig. 5.2 at  higher  photon 

energ ies .  The onset  of t h e  new s t r u c t u r e  a t  t h e  t r a i l i n g  edge again 

occurs over  a smal le r  energy range a t  80 K. 
a r t i f i c i a l  s ince  t h e  th re sho ld  decreases  by  about 0.1 e V  i n  AgBr upon 

cooling. A l l  t h e  s t r u c t u r e  through 10,4 e V  is sharpened considerably 

and t h e  peak-to-val ley r a t i o s  increased. A s  was pointed out earlier,  

t h e  f u l l  width at 9O$ of t h e  he ight  of t h e  c e n t r a l  peak at 10.2 eV is  

sharpened from 0.6 e V  at 2 B ° K  t o  l e s s  t han  0.3 eV a t  l i q u i d  n i t rogen  

temperature.  The reason f o r  t h e  loss  of structure above a f i n a l  s ta te  

energy of about 9*5 eV and t h e  l a c k  o f  sharpening of t h i s  structure 

(see  

0 This may be somewhat 

hY = 10.6 eV)  wi th  sample cool ing is d iscussed  i n  Chzpter V I I .  

It is  important to note t h a t  t h e  peak-to-peak separa t ions  a r e  not 

s i g n i f i c a n t l y  a l t e r e d  b y  temperature v a r i a t i o n .  This i s  p a r t i c u l a r l y  

evident  when EDCs a t  intermediate  temperatures a r e  included 8s i n  

F ig*  5.3. At 9.7 eV where t h e  peak-to-val ley r a t i o s  are a maximum, t h e  

peaks each sharpen Fpon cool ing  wi th  a he ight  modulation t h a t  reverses  

the  order ing  of t h e  r e l a t i v e  he ights  of t h e  peaks, bu t  t h2  peak-to-peak 

spacing and t h e i r  absolu te  p o s i t i o n s  a re  unaffected.  

t o  c o q a r e  p o s i t i o n s  of peaks s ince  the  energy s c a l e s  were independently 

determined f o r  each se t  of EDCs a t  a f ixed  temperature.  The sharpening 

It is meaningful 
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FIGURE 3 .le Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  photo;) for e lec t rons  photoemitted 
from AgBr a t  90 and 295 K f o r  photon energies  of 9 e g  
through 9,6 eV.  
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ELECTRON ENERGY, E (eV) 

FIGURE 5.2 Cogparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per incident  phokon) for e lec t rons  photoemitted 
from AgBr a t  50 and 2S0K for photon energies  of g e 8  
through 10A eV.  



0.03 

0.02 

A 

2 
2 0.01 t 

0 c 
0. 

t 
0)  

0 
t 

c 

E 
.- 
2 0  
2 
c 
t 
0 
Q, 
Q) 
- 
Y 

0.02 z 

0.01 

c 

I I I I I I 1 

FIGURE 5.3 - Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
yield (per inc ident  photon) f o r  e l ec t rons  photoemitted 
from AgBr a t  90 through 285OK f o r  photon energ ies  of 
9.7 and 10.2 eV. 



of t h e  lead ing  edge with cooling, seen  i n  t h i s  f igure,  i s  ind ica t ive  

of a more wel l -def ined valence band m a x i m u m ,  As  is seen c l e a r l y  at 

102 eV, the  s t r i k i n g  appearance of a peak at t h e  t r a i l i n g  edge is i n  

part  due t o  t h e  reduct ion of t h e  threshold  by 0,1 eV upon AgBr 
( see  Chayter V I I I )  e 

cool ing 

Considerat ion of these  curves shows why t h e  quantum y i e l d  cannot be 

used t o  understand t h e  e f f e c t  of cool ing on the  e l ec t ron ic  s t a t e s .  Since 

t h e  y i e l d  i s  a measure of t h e  a r e a  under t h e  EDC, t h e  total changes i n  
a l l  t h e  p i eces  of s t r u c t u r e  are measured toge ther .  Thus, t h e  l a r g e  

s t r u c t u r e  changes i n  an EDC such as those f o r  hV = 10.2 eV 

top)  r e s u l t  i n  only a s m a l l  y i e l d  decrease as seen i n  Fig.  5.4. 
(Fig.. 5.3, 

This 
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FIGURE 5.4. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of the  y i e l d  of 
e l ec t rons  photoemitted p e r  inc ident  photon from AgBr a t  
90 and Z95°K. 
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y i e l d  i s  p l o t t e d  on a l i n e a r  s c a l e  t o  accentuate  the  s a t u r a t i o n  region. 

A t  each photon energy on t h e s e  curves, an in t eg ra t ed  e f f e c t  of t h e  

s t a t e s  is measured, and thus  does not y i e l d  any de ta i led ,  d e f i n i t i v e  

e l e c t r o n i c  state information. The d i p  i n  t h e  y i e l d  at 10.1 e V  is 

enhanced upon cool ing and is  of some i n t e r e s t .  

t he  y i e l d  peak-to-val ley ra t  i o  increases  gradual ly  wi th  decreasing 

temperature.  Since these  y i e l d s  have not been cor rec ted  for sample 

A s  is seen i n  Fig. 5.59 

FIGURE 5.5. Comparison of  t h e  s p e c t r a l  
e l e c t r o n s  photoemitted p e r  
at, 80 through 295OK. 

d i s t r i b u t i o n s  of the  y i e l d  of 
inc ident  photon from AgBr 
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r e f l e c t i v i t y ,  t h e r e  may be  some concern t h a t  t h i s  y i e l d  s t r u c t u r e  is 
introduced by t h e  q p t i c a l  p r o p e r t i e s ,  At room temperature where t h e  
r e f l ec t ance  has been measured,” t h e  y i e l d  can be ca l cu la t ed  i n  terms 

of t h e  absorbed photon f l u x  as shown i n  Fig.  5.6. A s  can be seen, t h e  

FIGURE 5.6,  Comparison of t he  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  of 
e l ec t rons  photoemitted per inc ident  and absorbed photon 
from AgBr a t  295’K. 



d i p  i n  t h e  y i e l d  around 10 eV is  not removed by co r rec t ing  f o r  sample 
r e f l ec t ance  and thus,  cannot be due t o  t h e  o p t i c a l  p rope r t i e s .  It is 

reasonable to assume t h a t  i t s  temperature dependence is c h a r a c t e r i s t i c  

of a change i n  t h e  i n t r i n s i c  photoemission. The e f f e c t  of cooling on 

t h e  e l e c t r o n  t r a n s p o r t  i n  t h e  s i l v e r  ha l ides  is seen i n  the  y i e l d  when 

it is  p l o t t e d  on a logar i thmic  s c a l e  i n  Fig.  5.7. The low pnoton energy 

t a i l  due t o  e l ec t rons  exc i t ed  i n  t h e  s i l v e r  s u b s t r a t e  is considerably 

increased upon AgBr cooling. This is probably due t o  an increased hot 

e l e c t r o n  s c a t t e r i n g  length  i n  t h e  s i l v e r  hali-de at 30°K caused by reduced 

thermal v i b r a t i o n  of t h e  l a t t i c e  a t  t h e  low teqpera ture  ( i . e - ,  f reez ing  

out of  t h e  o p t i c a l  phonons). 

The d a t a  f o r  A g C l  shows t h e  same c h a r a c t e r i s t i c s  as those discus-  

sed f o r  AgBr above. The EDCs i n  the  energy range from 9.2 through 

10.0 eV a re  shown i n  Fig. 5.3e 
edge of t h e  EDC is  sharper  and somewhat sti-onger when t h e  sample is 
cooled. The increased s t r eng th  of t h e  threshold  s t r u c t u r e  i n  t h i s  f i g u r e  

occurs only over a small range of f i n a l  s t a t e  energy and f o r  all s t r u c -  

t u r e  as it passes  through these  energ ies .  It w i l l  be shown to be due to 
a temperature dependent f i n a l  dens i ty  of s t a t e s  region around 8el eV i n  

Chapter V I I .  This enhancement i s  e s p e c i a l l y  evident  a t  t h e  higher photon 

energ ies  shown i n  Fig. 5.9. Note how t h e  threshold  s t r u c t u r e  becomes so 

s t rong  a t  80°K t h a t  it has t o  be drawn t o  a reduced sca l e  of 2:3 f o r  ease 

of  comparison. This s t r u c t u r e  i s  considerably sharpened by cooling; at 

hV = 10e8 eV and 11.0 eV, t h e  t r a i l i n g  peak width a t  90% of i t s  height  

sharpens by about 0.15 eV from 290 t o  30°K. The leading  edge s t r u c t u r e  

at these  energ ies  shows the  same r e v e r s a l  i n  t h e  order  of t h e  r e l a t i v e  

peak he ights  upon cool ing as is seen i n  AgBr (Fig. 5*1)* The leading  

shoulder is sharpened i n t o  a d i s t i n c t  peak much more than  t h e  neighboring 

s t r u c t u r e  is .  This can be seen c l e a r l y  i n  Fig.  5.10 when t h e  i n t e r -  

mediate temperature d a t a  is included. I n  p a r t  (a)  a t  hV = 10.4 eV , 
t h i s  sharpening i s  seen to occur gradual ly .  These curves i l l u s t r a t e  

t h a t  t h e  peak-to-peak separa t ion  remains r e l a t i v e l y  independent of 

temperature i n  A g C l  just as it d i d  i n  AgBr  (. Note how t h e  threshold 

s t r u c t u r e  s t r eng th  i s  so  much more enhanced a t  a f i n a l  s t a t e  energy of 

The peak which q p e a r s  on t h e  lead ing  



FIGURE 5.7. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t he  y i e l d  
o f  e l ec t rons  photoemitted p e r  inc ident  photon from 
AgBr a t  80 and 2 B o K .  
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FIGURE 5 ,!?I* Comparison of energy d i s t r i b u t i o n s  normalized to quantum 
y i e l d  (per  inc ident  photon) f o r  e l ec t rons  photoemitted 
from A g C l  a t  30 and Z B 0 K  f o r  photon energ ies  of 9.2 
through 10.0 eV. 
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ELECTRON ENERGY, E (eV) 

FIGURE 5 -9. Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per inc ident  photon) f o r  e l ec t rons  photoemitted 
from AgCl 
through 11.0 eV. 

a t  90 and Z 5 O K  f o r  photon energies  of 10.2 
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ELECTRON ENERGY, E (eV) 

FIGURE 3 .lO(a) e Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (pe r  inc ident  photon) for e lec t rons  
photoemitted from A g C l  a t  30 through Z90°K 
for photon energ ies  of 10.4 and 10.3 e V e  



FIGURE 5 .lO(b) e Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) f o r  e l ec t rons  
photoemitted from A g C l  a t  90 through 290°K 
f o r  a photon energy of 9.0 eV. 
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\ 
8 a 1  e V  (hV = 10+8 eV 

s t r e n g t h  i s  seen f o r  a l l  s t r u c t u r e  i n  t h i s  f i n a l  s t a t e  energy range as 

shown i n  p a r t  (b) a t  hV = 9 , O  eV . The ?pparent s h i f t  of  t h i s  :peak 

from a f i n a l  s t a t e  energy of 8e2 to 8*1 eV Gpon cool ing may be  f u r t h e r  

evidence of t h e  e f f e c t  of a f i n a l  dens i ty  of states phenomena: 

p o s s i b i l i t y  w i l l  be discussed f u l l y  i n  ChFpter V I I .  

EDC) than  at lower energ ies .  This enhanced 

t h i s  

The temperature dependent behavior  of t h e  quantum y i e l d  i s  a l s o  

similar f o r  A g C l  and AgBr e A s  seen i n  Fig.  5.11, t h e  A g C l  y i e l d  

develops a d i p  around 10.9 e V  upon cool ing -hich occurs gradual ly  with 

decreasing temperature.  This is not be l ieved  t o  be caused by t h e  change 

i n  o p t i c a l  p r o p e r t i e s  with temperature s ince ,as  i s  seen i n  Fig.  5*l2, 
accounting f o r  t h e  r e f l e c t i v i t y  at room t e q e r a t u r e  does not remove 

t h e  small d i p  at t h i s  photon energy. 

y i e l d  i n  Fig. 5.13, t h e  reduct ion  i n  hot  e l e c t r o n  s c a t t e r i n g  is seen t o  

cause a s i g n i f i c a n t  increase  i n  t h e  y i e l d  from t h e  s i l v e r  subs t r a t e .  

There i s  a l s o  some increase  i n  t h e  absolu te  y i e l d  i n  t h e  s a t u r a t i o n  

reg ion  f o r  A g C l  . Based on examination of t h e  EDCs i n  t h i s  energy 

region, t h i s  i s  probably due t o  t h e  enhanced photoemission caused by 

t h e  t enpe ra tu re  dependent f i n a l  dens i ty  o f  s t a t e s  region around 

E = 8.1 eV 

46 

From t h e  logari thmic p l o t  of t h e  

r a t h e r  than  a t r a n s p o r t  r e l a t e d  phenomenon. 

I n  t h e  photon energy range presented above, t h e r e  a re  t h r e e  EDC 

peaks which shaypen g r e a t l y  upon cool ing both  AgBr and A g C l  . A s  

w i l l  be seen i n  C h q t e r  V I I I ,  t h e  corres:ponding peaks i n  t h e  two ha l ides  

change energy wi th  hV v a r i a t i o n  i n  t h e  same manner. Thus, t h e  iqpor -  

t a n t  c h a r a c t e r i s t i c s  of t h e  EDCs are interchangeable f o r  t h e  two ha l ides .  

I n  s tudying t h e  temperature dependence of  t hese  s i l v e r  ha l ide  EDCs, t h e  

:peak sharpening is c l e a r l y  one of  t h e  most important f e a t u r e s  of t h e  

da t a .  The peak s t r e n g t h  v a r i a t i o n s  cannot be  f u l l y  analyzed because the  

temperature dependence of t h e  r e f l ec t ance  is not known, and t h e  peak 

p o s i t i o n s  appear t o  be  r e l a t i v e l y  independent of temperature e Thus, it 

is reasonable t o  focus our a t t e n t i o n  on t h e  temFerature dependence of  

t he  width of t h e  AgBr and A g C l  EDC s t r u c t u r e .  The remainder of t h i s  

chapter  w i l l ,  therefore ,  b e  devoted t o  t h e o r e t i c a l  ca l cu la t ions  of t he  

thermal  broadening of t h e  s i l v e r  ha l ide  energy states and a comparison 



FIGURE 5.11. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of  e l ec t rons  photoemitted p e r  inc ident  photdn from 
A g C l  at 80 through ZgO°K. 
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FIGURE 5.12. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of 
. t h e  y i e l d  of  e l e c t r o n s  photoemitted pe r  inc ident  

and absorbed photon from AgCl at  295°K. 
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FIGURE 5.13. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e l ec t rons  photoemitted p e r  inc ident  photon from 
A g C l  a t  90 and 2S0K. 



of these  magnitudes to the  experimental  EDC widths. As  w i l l  be seen, 

t hese  computations suggest t h a t  dynamic hybr id iza t ion  of t h e  halogen 

p and Ag 4d wavefunctions is respons ib le  f o r  t h e  EDC broadenings 

and t h e i r  t enpera ture  dependences. 

B e  Dynamic Hybridizat ion Calculat ions i n  t h e  Tight-Binding 

Approximat ion 

I n  Chapter I11 we discussed t h e  d e t a i l e d  ca l cu la t ion  of t he  valence 

s t a t e s  of A g C l  performed as par t  of t h i s  study, using t h e  t i g h t -  

binding formalism presented i n  Chapter 11. These ca l cu la t ions  showed 

t h a t  of all t h e  terms which a r e  combined to give  the  energy s t a t e s  i n  

the  s o l i d  [ see  Eq. (2.10)1, t h e  overlap terms S and U (2) , which 
k, n k, n 

depend on t h e  p-d mixing, have a most profound influence on the  s i l v e r  

ha l ide  energy s t a t e s .  Further,  t hese  same terms a re  probably the  most 

dependent on temperature as discussed i n  Chzpter 11. We can then use 

these  two hy-potheses as a b a s i s  f o r  c a l c u l a t i n g  the  temperature depen- 

dence of t he  s t a t e s .  The quest ion is  thus  reduced to consider ing the  

e f f e c t  of t he  dynamic motion of t h e  l a t t i c e  on t h e  e l ec t ron  s t a t e s  v i a  

i t s  modulation of t hese  two t igh t -b inding  overlap terms. 

The f irst  p a r t  of such a c a l c u l a t i o n  involves accura te ly  accounting 

f o r  t h e  thermal v ib ra t ions  of t h e  ions.  We have ca lcu la ted  the  r m s  

displacement of t h e  ions as a func t ion  of temperature using t h e  Debye- 

Waller theory.  From t h i s  theory, t he  mean square amplitude of vibra-  

t i o n  of  each atom i n  a monatomic so l id ,  wi th  one atom pe r  u n i t  c e l l  of 

mass m is  given by 

8 

The s i l v e r  ha l ides  are,  of course, diatomic with two atoms p e r  u n i t  

c e l l ,  one of each cons t i t uen t .  It has been found t h a t  5 good f i r s t  

approximation to t h e  ca l cu la t ion  of t he  v ib ra t ions  of each ion is  t o  

assume an equal  displacement f o r  t h e  two types of ions and f u r t h e r  to 
assume only one atom p e r  u n i t  c e l l  with a mass which i s  the mean of the  
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- 
two cons t i tuents ,  m 

considerably poorer  r e s u l t  f o r  t h e  mean square displacement i n  diatomic 

s o l i d s  such as N a C l  , InP , and GaP which were used as t e s t  cases  

f o r  t h i s  ca l cu la t ion .  Using t h e  mean mass, Eq, (5.1) can be used 

d i r e c t l y  t o  c a l c u l a t e  t h e  r m s  displacement, 

It is  a b i t  more i l lumina t ing  t o  consider  t he  l i m i t i n g  cases  of t h i s  

r e l a t i o n ,  A s  T 4 0 t h e  second term i n  Eq. (5.1) becomes very s m a l l  

and t h e  first dominates. Thus, t h e  zero-point displacement of  t h e  ions 

is given by 

Note t h a t  us ing  t h e  reduced mass y i e lds  a 

u i n  t h e  s i l v e r  ha l ides ,  

This i s  a constant  depending only on t h e  Debye temperature and mean 

mass of  t h e  s o l i d ,  

second term dominates and i t s  exponent ia l  can be  approximated by a power 

series expansion. 

t he  integrand is u n i t y  and using Eq. (5.2), Eq. (7.1) becomes 

A t  temperatures above t h e  Debye temperature, t h e  

Using only t h e  first two terms of t h i s  expansion, 

It t u r n s  out t h a t  if t h e  i n t e g r a l  is ca l cu la t ed  exac t ly  with t h e  f i rs t  

4 terms i n  t h e  power series expansion, t h e  f irst  term i n  Eq. (5.1) is 

balanced by a near ly  equal  bu t  negative con t r ibu t ion  from t h e  second 

term thereby  making Eq. (5.3) aTplicable  down to around @,,/2 

t h e  r m s  displacement goes as t h e  square roo t  of t h e  temperature above 

a temperature about h a l f  t h e  Debye value. Using Eqs. (5.2) and (5.3), 
t h e  rrns displacement as func t ion  of temperature up t o  300°K is  p l o t t e d  

i n  Fig.  5a14 f o r  & C l  i n  p a r t  (a)  and f o r  AgBr i n  p a r t  ( b ) .  The 

con t r ac t ion  of t h e  l a t t i c e  constant ,  a , upon cool ing from room 

temperature t o  80 K as determined by  Lawn,25 is shown f o r  each ha l ide  

f o r  comparison t o  t h e  v i b r a t i o n a l  amplitudes e Note t h a t  t h e  cont rac t ion  

of t h e  nea res t  neighbor d i s t ance  is ha l f  t h i s  amount. Following these  

ca l cu la t ions ,  t h e  r m s  displacements f o r  each ion  i n  AgC1 ,as determined 

from neutron d i f f r a c t i o n  measurements, was reported; lo6 these  are 

Thus, 

0 
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(4 
FIGURE 5.14(a) and (b).  

Temperature dependence of t h e  r m s  displacement of 
(a) AgCl and (b) AgBr including t h e  AgCl 
measurements of V i j  ayaraghavan, Nicklow, Smith, and 
Wilkinson (VNSW) i n  :pa r t  (a)  ( reference 106). The 
cont rac t ion  of t he  l a t t i c e  constant, a , from '295 
t o  80°K measured by Lawn (reference 23) is included 
f o r  comparison. 
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p l o t t e d  i n  Fig. .5.14(a) f o r  comparison t o  our  ca l cu la t ions .  

seen, t h e  two resul ts  are s u r p r i s i n g l y  c lose  being wi th in  lO$ and show- 

ing t h e  same f u n c t i o n a l  behavior .  The important t h i n g  t o  note is t h a t  

our  computed displacements, which a r e  t o  be  used i n  t h e  ca l cu la t ions  

d iscussed  below, are a t  worst  lower l i m i t s  of t h e  a c t u a l  displacements 

and c e r t a i n l y  are r e a l i s t i c  estimates of t h e  dynamic motion of t h e  

l a t t i c e  e 

A s  can be 

The e f f e c t  of t h i s  ion ic  motion on t h e  e l e c t r o n i c  wavefunctions of 

the  s o l i d  must now be  considered. 

mation of r e s t r i c t i n g  t h e  ex ten t  of t he  i n t e r a c t i o n  t o  about one neares t  

neighbor d i s t ance  and assuming t h a t  poss ib l e  averaging e f f e c t s  a r e  negli-  

g ib l e .  Further,  only t h e  e f f e c t  o f  k = 0 o p t i c a l  phonons w i l l  be 

considered. I n  Fig.  5.15, t h e  normalized free atomic wavefunctions, 

Yn , corresponding t o  t h e  valence p and d s t a t e s  are drawn to s c a l e  

for nearest neighbors i n  t h e  s i l v e r  ha l ide  l a t t i c e .  These o r b i t a l s  a r e  

taken  from t h e  Herman-Skillman tables5 and represent  t h e  a c t u a l  t i g h t -  

b inding  o r b i t a l s  f o r  t h e  s t a t e s  a t  I' as w i l l  be made c l e a r  below. I n  

the  lower part of t h i s  f i g u r e  t h e  d i s t ances  of i n t e r e s t  are presented 

f o r  comparison. A s  i s  seen, t he  r m s  displacement, u , of 0.26 8 a t  

room temperature ca l cu la t ed  from Eq. (5.3) f o r  bo th  A g C l  and AgBr , 
is  about 10% of t h e  nea res t  neighbor d i s t ance  a/2 . Further,  t h i s  

displacement is reduced i n  ha l f  when the  s o l i d  i s  cooled from 295 to 9O0K. 
Note t h a t  t h e  con t r ac t ion  of  t h e  l a t t i c e  upon cooling, 

t h e  i n t e r - i o n i c  spacing by about an order  of magnitude l e s s  than  t h e  

v i b r a t i o n  of t h e  ions ., I n  t h e  ad iaba t i c  approximat ion, t h e  e l e c t r o n i c  

wavefunctions r i g i d l y  follow t h e  motion of t h e  ions instantaneously.  

One can t h e r e f o r e  consider  t h e  wavefunctions as being d isp laced  rela- 

t ive  t o  each o t h e r  by  t h e  r m s  displacement of t h e  ions.  If t h e  

Ag(4dl-O) 

d i sp laced  by t h e  r m s  displacement at 295OK (shown on t h e  s c a l e  a t  t h e  

bottom of  the  f igure) ,  t he  new p o s i t i o n  of t h i s  o r b i t a l  is shown by the  

dashed curves i n  Fig.  5.15. Since t h e  region of overlap between these  

wavefunctions is of i n t e r e s t ,  it is  s i g n i f i c a n t  t o  note t h a t  t h e  change 

i n  t h e  area common t o  both o r b i t a l s  (shown shaded i n  t h e  f i g u r e )  changes 

We w i l l  use a very simple approxi- 

Aa/2 , reduces 

o r b i t a l  i s  he ld  f i x e d  and the  halogen p wavefunction is 
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CI 

295’K S-7 

The normalized f r e e  atomic o r b i t a l s  from t h e  Herman- 
S k i l h a n  t a b l e s  ( re ference  5 )  corresponding t o  t h e  
valence p and d wavefunctions a t  I‘ drawn to 
sca l e  f o r  neares t  neighbors i n  t h e  (a) AgCl and 
(b) AgBr l a t t i c e s .  The area common t o  t h e  two 
o r b i t a l s  i s  changed by t h e  shaded reg ion  when t h e  
interatomic d i s t ance  is decreased by t h e  room 
temperature rms displacement The ms disp lace-  
ments and cont rac t ions  i n  neares t  neighbor d is tance  
due to cool ing from 2% to SOoK are shown i n  the  
bottom of each p a r t  of t h e  f i g u r e .  



295OK 
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by 19$ i n  AgCl and 17% i n  AgBr due to t h e  r m s  displacement of  t h e  

ions.  O f  course, t h i s  i s  not t h e  quan t i ty  o f  i n t e r e s t  i n  determining 

t h e  energy of  t h e  corres:ponding states. Rather, t he  product of  t hese  

wavefunct ions (i .e 

p o t e n t i a l ,  v ( i .e. ,  Sk'') u 
k, n 

shown i n  Fig. 5.16 f o r  t he  halogen p and Ag(4d ) o r b i t a l s  and 

) and t h e i r  product including t h e  atomic 

) a r e  of i n t e r e s t ,  The l a t t e r  term is 
10 

I 

I i  1 
-% 

( a! 
FIGURE 5.16(a) and (b)  

10 
The overlap terms involving t h e  halogen p and Ag(4d ) 
atomic o r b i t a l s  and p o t e n t i a l s  f o r  nea res t  neighbors i n  
t h e  (a) A g C l  and (b) AgBr l a t t i c e s .  These q u a n t i t i e s  
are shown f o r  t he  equi l ibr ium interatomic separa t ion  (-) 
and f o r  t h e  nea res t  neighbor d i s t ance  reduced by t h e  room 
temperature r m s  atomic displacement (---) with  t h e  d i f -  
ference between t h e  i n t e g r a l s  of t hese  q u a n t i t i e s  shown 
at  the  bottom of each p a r t  of t h e  figure. 



FIGURE 5.16(b) 

atomic :po ten t ia l s  from t h e  Herman-Skillman tables .' 
t o  note t h a t  no e x p l i c i t  k dependent term has been lncluded i n  forming 

these  products  However, s ince  t h e  k-de:pendence e n t e r s  i n t o  t h e  t i g h t -  

b inding  approximation v i a  qhe Bloch sum of t h e  o r b i t a l s  [i.e., Eq. (2 .2)] ,  

t h e  k-dependent term e j is j u s t  u n i t y  a t  F ( i a e e ,  at t h e  cen te r  

of B r i l l o u i n  zone where k = 0 ) .  Therefore, us ing  unchanged atomic 

wavefunctions and p o t e n t i a l s  i s  equivalent  t o  car ry ing  out  t h e  calcu- 

l a t i o n  a t  I' a Again using t h e  ad iaba t i c  approximation, we can dis-  

p l ace  t h e  halogen r e l a t i v e  t o  t h e  neares t  neighbor Ag by t h e  r m s  

displacement and recompute t h e  o v e r l q  t e r m ;  t h i s  is shown by  t h e  dashed 

It is i n t e r e s t i n g  

iB.r  



0 curves f o r  t h e  295 K ion ic  displacement.  

simply t h e  in tegra l  of t h i s  term which is  equivalent  to t he  area under 

t h e  curves i n  Fig.  5.16. 
over lap  term changes by 34k i n  A g C l  and 33% i n  AgBr due to t h e  thermal 

v i b r a t i o n s  of  t h e  l a t t i c e  at room temperature.  

involve t h e  atomic p o t e n t i a l  ( i e e e ,  S ) changes by  27% f o r  AgCl 
and 26% f o r  AgBr a These changes are q u i t e  s i g n i f i c a n t  and can be 

expected to cause a modulation of  t he  energy states a t  I? 

The energy con t r ibu t ion  is  

A s  ind ica ted  at t h e  bottom of the  f igure,  t h i s  

The term which does not 

k, n 

O f  course, t h e s e  estimates are only meant to roughly i l l u s t r a t e  t h e  

phys ica l  process  by which t h e  energy s ta tes  a r e  broadened. 

are not exac t  because t h e  ind iv idua l  p and d o r b i t a l s  must be con- 

s ide red  and t h e  atomic p o t e n t i a l  must be c o r r e c t l y  screened t o  y i e l d  a 
meaningful ca l cu la t ion .  The computation must be done us ing  t h e  9 X 9 
mat r ices  discussed i n  Chapter 111 with t h e  matrix elements of Table 111.1 

to ob ta in  t h e  cont r ibu t ions  to t h e  energy i n  Eq. ( 2 , l O )  e 

t i o n s  made with an unscreened S l a t e r  exchange p o t e n t i a l  i n  t h e  course 

of t h e  work of re ference  3, Fowler es t imates  t h a t  each of t he  

two-center i n t e g r a l s  ( i * e . ,  t h e  parameters l i k e  pdc i n  Table 111.1) 

These terms 

From calcula-  

A g C l  

107 changes b y  an average of  about 5 9  upon a l$ change i n  l a t t i c e  constant .  

A s  a ze ro  order  ca lcu la t ion ,  we w i l l  t ake  t h e  ca l cu la t ed  rms disp lace-  

ment as an estimate of t h e  maximum and m i n i m u m  values  f o r  t he  l a t t i c e  

constant .  This i s  t h e  same as consider ing t h e  v i b r a t i o n  of one ion wi th  

a l l  t h e  o t h e r s  f rozen  i n  t h e i r  equi l ibr ium pos i t ions .  It is a c t u a l l y  a 

very conservat ive estimate s ince  it is  equivalent  t o  changing t h e  neares t  

neighbor spacing (which is  ha l f  t h e  l a t t i c e  cons tan t )  by  only h d f  the  

rms displacement.  We can take  account of t h e  ion ic  displacement by a 

l a t t i c e  con t r ac t ion  or expansion s ince  t h e  overlap terms, which a re  b a s i c  

to t h e  modulation of t h e  p-d mixing, a r e  q u i t e  sho r t  range involving 

pr imar i ly  neares t  neighbors.  The sepa ra t ion  between these  neighbors can 

be  changed by e i t h e r  t h e  thermal displacement of t h e  ions o r  a change i n  

t h e  l a t t i c e  cons tan t .  

wavefunctions is concerned, a con t r ac t ion  or expansion of t h e  l a t t i c e  i s  

roughly, to zero order,  equiva len t  t o  t h e  v i b r a t i o n  of t he  ions.  Using 

Fowler's es t imate  f o r  t h e  r e s u l t i n g  e f f e c t  on t h e  matr ix  elements, 

Thus, as fa r  as t h e  dynamic hybr id iza t ion  of t h e  

107 
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t h e  two-center U (' and normalizat  ion s cont r ibu t ions  t o  t h e  

energy can be recomputed. 

of t h e  A g C l  L' valence band m a x i m u m  s t a t e  of about 1.1 e V  a t  room 

temperature which sharpens t o  O e 6  e V  upon cool ing t o  8OoK. 

p-derived s ta te  is not d i r e c t l y  r e l a t e d  t o  any measured EDC s t ruc tu re ,  

i t s  energy provides  an order  of  magnitude estimate f o r  t h e  experimental 

k9 n k9n 
We thereby c a l c u l a t e  a v a r i a t i o n  i n  energy 

3 
Though t h i s  

broadenings s ince  i t s  l a r g e  hybr id iza t ion  (ice., 3O$ d cha rac t e r  

makes it p a r t i c u l a r l y  s e n s i t i v e  t o  ion ic  separa t ion .  The absolu te  e r r o r  

i n  t h e s e  ca l cu la t ions  can be est imated by r e c a l l i n g  from Chapter I11 

t h a t  t h e  e f f e c t s  of t h e  l a t t i c e  v i b r a t i o n  on t h e  absorpt ion are "frozen 

out" by  4.2'K. Thus, one would expect any energy broadening ca l cu la t ed  

us ing  t h e  zero-point r m s  displacement of t h e  ions t o  be erroneous. We 

c a l c u l a t e  an A g C l  L' broadening of  0.3 e V  at OOK. Thus, t h e  cor rec ted  

room temperature broadening is 0.9 e V  wi th  a sharpening of O e 5  e V  upon 

cool ing  t o  30°K. 

t i c e  v i b r a t i o n a l  modulation of t h e  overlap produces f l u c t u a t i o n s  i n  
t he  energ ies  of t h e  hybridized states which is  of  t h e  same magnitude as 

t h e  observed broadening of t h e  ;photoemission EDCs (e.g., 0.6 e V  f o r  

AgBr at 2B°K, hY = 10.2 eV , seen i n  Fig.  5 .2) .  These rough ca lcu la-  

t i c n s  f u r t h e r  i nd ica t e  t h a t  t h e  changes of  t hese  energy v a r i a t i o n s  upon 

temperature reduct ion  are of t h e  same order  of  magnitude as t h e  measured 

EDC temperature dependences (e.g., 0.3 eV f o r  AgBr a t  295OK, hY = 

10,2 e V  , seen i n  Fig.  5 .2) .  I n  addi t ion,  s ince  t h e  broadening depends 

on t h e  amplitude of  t h e  ion ic  v ibra t ion ,  t h e  gradual  dependence on 

temperature seen i n  our experiments (Figs.  5.3 and 5.10) is t o  be 

expected. The complete numerical r e s u l t s  of t h e s e  ca l cu la t ions  and a 

comparison of them t o  experiment are presented  i n  Tables V . l  and V.2, 

respec t ive ly ,  at t h e  end of t h e  next s ec t ion .  

It should be  emphasized t h a t  t hese  ca l cu la t ions  only considered t h e  

3 

Our s i m p l e  c a l c u l a t i o n  t h a s  ind ica t e s  t h a t  t h e  l a t -  

dynamic modulation of t h e  overlzp cont r ibu t ions  t o  t h e  energy, 

and U ( 2 )  It has been ca l cu la t ed  by Fowler t h a t  t he  Madelung energy, 

E(M) , changes by a t  least  as much as these  two terms f o r  a given change 

i n  l a t t i c e  constant  e 27 
t h e  ions a r e  equiva len t  t o  a l a t t i c e  constant  change, is a very poor 

S 
k9 n 

e 

k9 n 
n 

However, t h e  assumption t h a t  t he  v i b r a t i o n s  of 
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approximation f o r  t h e  Madelung energy s ince  it i s  a long range t e r m .  

It is formed by t ak ing  t h e  sum over many u n i t  c e l l s ;  when many c e l l s  are 

included i n  t h e  sumg t h e  dynamic v a r i a t i o n s  of t h e  ions w i l l  t end  to 
average to zero ,  As  po in ted  out above, t h e  overlzp terms, on t h e  o the r  

hand, are very s h o r t  range involving p r imar i ly  neares t  neighbors and 

thus  depending q u i t e  s t rong ly  on l o c a l  v a r i a t i o n s  i n  ion pos i t i on .  One 

can  thus  assume, t o  f irst  order,  t h a t  t h e  dynamic v a r i a t i o n s  of t h e  

Madelung term are neg l ig ib l e  compared to those  of t he  overlap con t r i -  

but ions .  

C Dynamic Hybridizat ion Calcula t ions  Using t h e  Pressure Dependence 

of t h e  Absorption 

The dynamic broadening of t h e  energy states can be est imated i n  

another  way. The temperature dependent E X  broadening is caused by  

dynamic v a r i a t i o n s  i n  t h e  in t e r - ion ic  spacing. One can ob ta in  s t a t i c  

v a r i a t i o n s  i n  t h e  same spacing by applying hydros t a t i c  pressure  to t h e  

s o l i d ,  Thereby, t he  dependence of  the  e l e c t r o n i c  energy l e v e l s  on 

equi l ibr ium ion ic  sepa ra t ion  can be experimental ly  determined. We can, 

i n  f a c t ,  use t h e  measurements of Aust f o r  t he  quas ihydros ta t ic  pressure  

dependence of t h e  d i r e c t  and i n d i r e c t  absorp t ion  edges a t  X B ° K ,  

determine t h e  dependence of t h e  valence band maximum energy, 

i on ic  p o s i t i o n  f o r  AgBr and AgCl e From t h i s  t he  dynamic broadening 

e f f e c t s  due t o  t h e  r m s  displacement of t h e  ions at e leva ted  temperature 

can be est imated.  

4 t o  

Ev , on 

Aust measured t h e  pressure induced s h i f t  i n  t he  d i r e c t  exc i ton  

abzorption, AEEx and found it to be t h e  same f o r  bo th  AgCl and 

AgBr 
dence on f r a c t i o n a l  volume change 

p l o t t e d  l i n e a r l y  on a log-log s c a l e  as shown i n  F igo  5.17. This 

implies  t h a t  t h e  exc i ton  s h i f t  i s  r e l a t e d  to t h e  volume change by a 

power law of t h e  form 

4 I n  an e f f o r t  to determine t h e  func t iona l  form of i t s  depen- 

AV/Vo , it was found t h a t  t h e  d a t a  

(5  *4> 
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@ AUS 

FIGURE 3.17. Pressure dependence of the d i r e c t  exci ton 
absorpt ion of AgBr and AgCl a t  2B0K 
from t h e  work of Aust ( re ference  4 ) .  



as determined by the  s lope of the  l i n e a r  f i t  t o  t h e  data shown i n  t h i s  

f i gu re .  

a t  r ( i e e e ,  

t r a n s i t i o n ,  i s  unaffected by p res su res  up t o  t h e  50  Kbar l i m i t  of h i s  

experiment. Thus, t h e  pressure-induced exc i ton  s h i f t  is due e n t i r e l y  

t o  t h e  s h i f t  of t h e  conduction band minimum, 

dence of rl is thus  given d i r e c t l y  by Eqa (5.4) This conduction band 

state is just  t h e  f i n a l  s ta te  f o r  t h e  i n d i r e c t  t r a n s i t i o n  from t h e  

valence band m a x i m u m  at L e Further,  t h e  s h i f t  of t h e  i n d i r e c t  edge 

is only 10 t o  15% as l a r g e  as t h e  d i r e c t  exc i ton  bu t  i n  t h e  opposi te  

d i r e c t i o n .  Therefore, it can be concluded t h a t  t h e  s h i f t  of t h e  

valence band m a x i m u m  is i n  t h e  same d i r e c t i o n  as and s l i g h t l y  g r e a t e r  

than  t h e  s h i f t  of I?, e Thus, Eq. (5.4) is a l s o  t h e  genera l  form f o r  

t h e  p re s su re  dependence of t h e  energy of t h e  valence band maximum, 

t o  wi th in  10 to 15%. Using t h e  E s h i f t s  measured a t  ge>$ volume 

decrease by Aust, 
mined f o r  bo th  AgCl and AgBr .. We then  have the  experimental ly  

deduced valence band maximum dependence of  

Aust determined t h a t  t h e  energy of  t h e  h ighes t  valence s ta te  
) ?  which i s  t h e  i n i t i a l  s tate of t h i s  exc i ton ic  '15 

I'l ; t h e  pressure  depen- 

4 

Ev , 
V 4 t h e  zero p re s su re  cons tan ts  i n  Eq. (5.4) can be de te r -  

If we assume, as i n  s e c t i o n  B, t h a t  i n  t h e  dynamic hybr id iza t ion  model, 

the  r m s  displacement, u , is roughly equiva len t  t o  an equal  change i n  

l a t t i c e  constant,  t h e  f r a c t i o n a l  volume change is j u s t  

Using t h e  temperature dependence of  t h e  r m s  displacement given i n  

Eq. (5*3), a t o t a l  energy v a r i a t i o n  of t h e  valence band m a x i m u m  at  room 

tem.perature of about Oe!3 eV i n  AgCl and 0.7 eV i n  AgBr is deduced 

using Eqs.  (5.6) and (5 .5)  e This broadening is comparable t o  both t h e  

ca l cu la t ed  and wperirnental  values  presented i n  t h e  f i r s t  two s e c t i o n s  e 
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Consis ten t  with our o the r  f ind ings ,  it is reduced by 0.3 e V  for both 

h a l i d e s  upon cool ing  t o  30 K. It should be noted t h a t  t h e  broadening 

c a l c u l a t e d  for t h e  zero-point  motion of t h e  AgCl and AgBr l a t t i c e s  

a r e  not  reasonable  es t imates  for t he  e r r o r  of t hese  ca l cu la t ions .  This 

i s  because Eq.  (5.5) w i l l  g ros s ly  overest imate  t h e  broadening for s m a l l  

volume changes as is  c l e a r  from t h e  dev ia t ion  of  t h e  data from t h e  l i n e a r  

f i t  i n  Fig.  5.17. 

0 

I n  Table Vel, t h e  r e s u l t s  a r e  summarized f o r  t h e  dynamic hybridiza-  

t i o n  c a l c u l a t i o n s  of  t h e  t o t a l  energy v a r i a t i o n  of t h e  hybridized 

halogen p-derived valence band m a x i m u m  (i.e.,  

b inding  approximation (i.e.,  BANDS) and the  pressure dependence of t h e  

o p t i c a l  absorpt ion ( i . e . ,  a ) .  This t a b l e  includes t h e  uncorrected 

ms us ing  both the  t i g h t -  

TABLE V.1. Values ca l cu la t ed  f o r  t h e  terrperature dependences of t h e  
r m s  displacement ("ut') and t o t a l  broadening of t h e  valence 
band m a x i m u m  ('rAEv'') of P i g C l  and AgBr . The latter was 
computed using both  t h e  t ight-binding,  A g C l  e l e c t r o n i c  
energy bands ("BANDS") and t h e  pressure  dependence of t h e  
o p t i c a l  a b s o q t  ion  ( "atr) . 

0.26 1.13 0.82 
0.25 1.03 0.30 
0 -24 1.03 0.77 
0.22 0.97 0.73 
0.21 0.90 0.70 
0 e19 0 2 3  0.66 
0.13 0.76 0.61 
0.16 0 -63 0.56 
0.14 0 059 0.50 
0.10 0.31 

0.26 
o *25 

0.23 

0.22 

0.21 

0.19 
0.17 
0.15 
0.13 
0 -09 

0.73 
0.71 
0.63 
o .64 
0.62 

0 e53 
0 *54 
o .50 

0.44 



c a l c u l a t i o n s  not only a t  room and l i q u i d  n i t rogen  temperatures, bu t  a l s o  

t h e  changes which occur upon cool ing  between these  values.  The r m s  d i s -  

placements a r e  ca l cu la t ed  us ing  Eqs .  (5 .2)  and (5.3) with = 71.7 mu 

and 93.9 mu and OD = 162'K and 144OK f o r  AgCl  and AgBr respec t ive ly .  

Since both  a p o s i t i v e  and negat ive displacement of t h e  ions from equi- 

librium must be considered, t h e  energy changes represent  t h i s  t o t a l  

broadening. The broadenings are ca l cu la t ed  from the  t ight-binding AgCl 

bands as descr ibed i n  s e c t i o n  B and from t h e  pressure dependent absorp- 

t i o n  Eqse ( 5  e5) and (5.6) above. The energy e n t r i e s  include more d i g i t s  

than  are s i g n i f i c a n t ;  however, they a r e  included t o  show t h e  func t iona l  

dependence of t h e  energy from SO t o  Z B ° K .  These ca l cu la t ions  a re  com- 

pared t o  t h e  experimental f u l l  widths of t h e  EDC peaks a t  908 of t h e i r  

m a x i m u m  height  i n  Table V.2. The t igh t -b idning  e n t r i e s  have been 

TABLE V.2.  Comparison of t h e  temperature dependences of t he  go$ EDC 
width and t h e  coqputed broadening of t h e  valence band 
m a x i m u m  ("clFv") of A g C l  and AgBr - The ca l cu la t ions  
used both  t h e  t igh t -b inding  bands ("BANDS") and t h e  pres- 
sure  dependence of t he  absorpt ion ( " W )  f o r  bo th  t h e  r m s  
displacement (''u") and t h e  con t r ac t ion  of t h e  l a t t i c e  
(na) upon cool ing  from room t o  L N ~  

0 -5 

0 03 

0.2 

0 h 

0.3 

0.3 

0-14 0,3 0 0 5  

0.12 0.5 0.3 

0 2 6  O e 7  

0.13 0.4 

0 ~ 1 3  

t e q e r a t u r e .  

5 a737 

0 eo37 

< 0.1 

< 0,l 

t A g C l :  IV-A, .hv = 11.6 eV, -2.65 e V  peak (2 X r i g h t  half-width) 
(Fig.  6 ,3) .  

AgBr: IV-AJ hv = 10,Z eV, d i r e c t  peak (Fig.  fS.lS).. 
* 

Reference 2'3 e 
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0 cor rec t ed  f o r  t h e  copputed broadening a t  

t h e  d i scuss ion  i n  s e c t i o n  B. 

t o  t hese  measured 90k widths s ince  they  a r e  a s o r t  of  "half-width" energy 

having been computed us ing  t h e  r m s  r a t h e r  t han  t h e  amplitude of t h e  ionic  

displacement from equi l ibr ium. 

l a t i o n s  t o  determine t h e  e f f e c t  of t h e  l a t t i c e  cont rac t ion  are presented.  

A s  can be seen, t h e  cont rac t ion  produces s h i f t s  of  less than  0.1 e V  upon 

cool ing from 293 t o  30 K and, of course, no change i n  broadening. 

ca l cu la t ions  us ing  t h e  r m s  i on ic  dis:placemeKt, on t h e  o ther  hand, a r e  

always of t h e  same order  of magnitude as and are as l a r g e  or l a r g e r  than  

t h e  observed q u a n t i t i e s .  It is  thus  t h e  changing m p l i t u d e  of v ib ra t ion  

of t h e  ions which causes t h e  tegpera ture  dependent broadening r a t h e r  than  

t h e  l a t t i c e  cont rac t ion .  It is  c l e a r  from Table V.2 t h a t  t h e  p red ic t ions  

of our  dynamic hybr id i za t ion  model f o r  t h e  magnitudes of bo th  the  dynamic 

broadenings and t h e  changes upon cool ing  02 t hese  broadenings a re  q u i t e  

comparable t o  t h e  corresponding EDC magnitudes when c o q u t e d  e i t h e r  from 

pure ly  t h e o r e t i c a l  cons idera t ions  or by ex tens ion  of o the r  experimental  

r e su l t s .  

T = 0 K i n  accordance wi th  

The ca l cu la t ed  broadenings can be compared 

On t h e  r i g h t  s i d e  of t h i s  table, calcu- 

0 
The 

One of t h e  s i g n i f i c a n t  conclusions w e  can make from the  success of 

t h i s  dynamic hybr id i za t ion  model i s  t h a t  a l l  t h e  s t r u c t u r e  i n  the  EDCs 

which e x h i b i t s  a l a r g e  dependence on temperature must correspond t o  

e l e c t r o n i c  s t a t e s  which are h ighly  hybridized.  Since a l l  t h e  AgCl 

and AgBr EDC s t r u c t u r e  examined i n  s e c t i o n  A i s  teqpera ture  dependent, 

the  upper f i l l e d  states i n  these  s o l i d s  a r e  formed from hybridized mix- 

tures of halogen p and s i l v e r  4d o r b i t a l s .  These s t a t e s  a re  c l e a r l y  

:@-derived s ince  t h e  p s ta tes  are increased i n  energy while t h e  d ' s  

are reduced upon mixing t h e  two spec ie se3  This is q u i t e  s i g n i f i c a n t  

s ince  it is t h e  f irst  d i r e c t  experimental  measurement of t h e  halogen 

p s t a t e  o r i g i n  of t h e  valence band m a x i m u m .  

The EDC broadenings we have discussed are many times g r e a t e r  t han  

t h e  thermal  energy, 

t h i s  can occur. The p r i n c i p l e  which governs such considerat ions i s  t h a t  

t h e  m a x i m u m  energy which can be t r a n s f e r r e d  t o  t h e  e l e c t r o n i c  s ta tes  is  

t h e  energy i n  t h e  v i b r a t i n g  l a t t i c e .  The iqpor tan t  t h ing  is  t h a t  t h i s  

%T 
, and t h e r e  may be  some quest ion as t o  how 



i s  t r u e  for a l l  t h e  states i n  t h e  s o l i d  taken toge ther .  

s ta te  is increased i n  energy due t o  t h e  ion ic  motion, t h e  ne t  energy of 

t h e  d-derived states with which it mixes w i l l  decrease by near ly  t h e  same 

amount. 

g r e a t e r  amount t han  

e l e c t r o n i c  states is equiva len t  t o  the  more familiar c r y s t a l  f i e l d  

s p l i t t i n g  case where t h e  average energy of  t h e  sp l i t  l e v e l s  is equal  t n  

t h e  energy of t h e  unperturbed s t a t e  when t h e  degeneracy of t h e  levels  is 

taken i n t o  account. 

When a p-derived - 

Thus, t h e  ind iv idua l  hybridized states may be s h i f t e d  by a much 

This occurrence f o r  t h e  hybr id iza t ion  of  kBT 

D. Funct ional  Delpendence of t h e  EDC Broadening 

The d iscuss ion  i n  t h i s  chapter  has emphasized the  mechanism pro- 

ducing t h e  EDC broadening which is more than  an order  of  magnitude 

greater than  %T . I n  order  t o  s tudy t h e  d e t a i l e d  dependence of t h i s  

broadening on temperature, t h e  peak width a t  90% of t h e  maximum height,  

W , must be c l o s e l y  examined, This width i s  shown on t h e  10.2 eV 

AgBr EDCs i n  Fig., 5.l3* The very i n t e r e s t i n g  experimental  observat ion 

i s  t h a t  t hese  widths  p lo t  l i n e a r l y  against temperature on a semi- 

logari thmic s c a l e  as shown i n  Fig. 5.19. 
W , depends exponent ia l ly  on temperature, T : 

T h i s  means t h a t  t he  90$ width, 

where C = 0.47 for t h e  d a t a  of Fig.  5.19.. Unfortunately, t h e r e  are 

very few EDC peaks which have 90% widths c h a r a c t e r i s t i c  of only one 

p i ece  of  s t r u c t u r e  over t he  range of tegpera ture  va r i a t ion .  I n  f ac t ,  

t h e  r i g h t  end of t h e  235OK width i n  F ig+  5.18 is near ly  measuring t h e  

inf luence  of t h e  neighboring shoulder .  O f  t h e  peak widths t h a t  can be 

measured a t  9O$ of  t h e  height,  t h i s  exponent ia l  dependence [Eq. (3.7)l 
occurs f o r  a number of peaks i n  both  AgCl and AgBr ; t h e i r  cons tan ts  

Wo and C a r e  summarized i n  Table V.3. The EDC peaks whose 90% widths 

were measured are i d e n t i f i e d  by t h e i r  o r i g i n  i n  t h e  dens i ty  of valence 

s t a t e s  ( i s e e J  -3.7 and -2.65 eV)  o r  by the  na ture  of t h e  optical-  exc i t a -  

t i o n  process  ( i * e * ,  d i r e c t  t r a n s i t i o n  - "D") if t h e  peak does not 
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FIGo 5.19. Temperature dependence of t he  AgBr 10-2 eV 908 EDC 
width presented i n  Fig 5 *13* 



TABX V.3. Parameters which de f ine  t h e  exponent ia l  temperature 
dependence o f  t h e  AgBr and A g C l  905 EDC peak widths, 
W , given by Eq. (5.7):  Wo is t h e  frozen l a t t i c e ,  
EDC width and C i s  a measure of t h e  temperature 
dependence. 

&Br 
( IV-A) 

&Cl 
( IV-A) 

-3 07 11 *s 0.24 0.13 
-3.7 11.4 0 *25 0.12 

D 10 .s 0.32 0 033 

D ( Q )  9.7 0.15 0.27 
D ( Q >  9 -2 0.14 0.32 

D 10.2 o .25 0.47 

-2.65 (r) 11.9 0.14 0 *35 

-2.65 (r)  1 ~ 2  0.13 0.28 

-2.65 11.0 0.31 0.29 

-2.65 (r)  11.6 0.11 0.47 

-2.6gt 10.8 0,15 0.43 

* 
D = Direc t  

l? = L e f t  Half-Width 

r = Right Half-Width 

t~ = 8.1 e V  

o r i g i n a t e  f r m  one i n i t i a l  s t a t e  energy f o r  a11 photcn energ ies ;  t hese  

i d e n t i f i c a t i o n s  a r e  d iscussed  i n  de t a i l  i n  C h q t e r  VI11 (see Figs .  3.1 
and 9 e 3 ) e  
the  l a r g e  temperature range, and these  are indica ted  by an "Q" or 
'Yr' f o r  l e f t  o r  r i g h t  half-width.  The Wo is a measure of t h e  EDC 

width at T = 0 K if t h e r e  were no s i g n i f i c a n t  zero-point v ibra t ion ,  

while t h e  slope, C i s  a measure of t h e  dependence of t h e  width on 

temperaturee It is q u i t e  important t o  note t h a t  the  average parameters 

f o r  t h e  halogen p-derived s t r u c t u r e  a re  near ly  i d e n t i c a l  for AgBr %nd 

AgCl For t h e  AgBr I'Dff s t ruc tu re ,  Wo(full) = 0.29 eV and C = 0.35 

I n  some cases,  only t h e  half-width could be  measured over 

0 
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while  f o r  t h e  A g C l  ' t -2e651t  eV s t ruc tu re ,  Wo(full) = 0.27 eV and 

C = 0.34 ; t h e  A g C l  d a t a  i s  neglected because it is 
e f f ec t ed  by t h e  f i n a l  s ta te  reg ion  as w i l l  be  discussed 

i n  Chapter V I I .  These near ly  equal  temperature dependences f o r  AgBr 

and A g C l  (C 1/3) emphasize t h e  s imilar i t ies  between t h e  data f o r  

t h e  two ha l ides  and may be i n d i c a t i v e  of a fundamental constant  descr ib-  

ing t h i s  e f fec t ,  The -3.7 eV AgBr s t r u c t u r e  w i l l  be discussed i n  t h e  

next chqpter  ., 

hV = 10.8 eV 

E = 3.1 e V  

This observed dependence on temperature is q u i t e  s i g n i f i c a n t  

Doniach has taken  a Green's func t ion  approach t o  explaining t h e  dynamic 

hyb r i d  i z  a t  ion a 

t i o n s  i n  t igh t -b inding  o v e r h p s  induced by the  ion ic  motion, p r e d i c t s  

t h a t  t o  f irst  order,  t h e  dependence of  t h e  width of dens i ty  of states 

s t ruc tu re ,  w on ternperature should be of t h e  form, 

This theory, which t akes  i n t o  account random varia- 108 

103 

This i s  p r e c i s e l y  t h e  form [Eq. (5.7)l we deduced from experiment f o r  

t h e  EDC width dependence. If C '  i n  Eq. ( 5 * 8 )  should be  a constant,  

then  t h e  dev ia t ion  of  C , i n  Eq. (5 .7) ,  from C '  may be a quant i ta -  

t ive  measure of t h e  amount of  hybr id i za t ion  of t h e  e l e c t r o n i c  s t a t e s  

corres:ponding t o  t h e  :pa r t i cu la r  EDC peak. This p r e d i c t i o n  of Eq. (5.3) 
by Doniach's theory  g ives  f u r t h e r  credence t o  t h e  dynamic hybr id iza t ion  

model f o r  t h e  temperature de:pendence of s i l v e r  ha l ide  photoemission, 
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V I .  THE "PURE" Ag 4d ELECTRONIC VALENCE STATES OF 

AgBr AZVD A g C l  

The l a r g e  hybr id i za t ion  of t h e  halogen p states wi th  t h e  s i l ve r  

4d states has been t h e  ob jec t  of our d iscuss ion  thus  far. It is  t h i s  

mixing which c r e a t e s  t h e  complex valence e l e c t r o n i c  s t r u c t u r e  (Chapter 

111) and causes t h e  very  large temperature de2endence of t h e  EDC s t r u c -  

ture  (Chapter V). There are a l s o  a large number of Ag 4d states whose 

wavefunctions are h igh ly  l o c a l i z e d  on t h e  s i l v e r  s i tes  and do not s i g n i -  

f i c a n t l y  mix wi th  t h e  neighboring halogen o r b i t a l s .  "9 
dependent photoemission EDCs o f f e r  a unique method f o r  unambiguously 

measuring these  "pure" states. Since t h e  energy of such "purelf s t a t e s  

does not depend on wavefunction overlap, one expects  from t h e  dynamic 

hybr id i za t ion  model t h a t  t he  energy of t hese  states w i l l  not be g r e a t l y  

a f f e c t e d  by t h e  v i b r a t i o n s  of t h e  l a t t i c e .  Hence the  photoemission from 

these  s t a t e s  w i l l  e x h i b i t  a much smaller temperature dependence than  f o r  

t h e  hybridized s ta tes  ., Therefore, s t r u c t u r e  which e x h i b i t s  v i r t u a l l y  no 

change upon cool ing probably corresponds t o  t h e  Ag s t a t e s  wi th  almost 

pure 4d symmetry. I n  t h i s  chqpter,  we w i l l  examine t h e  EDCs of AgBr 

and A g C l  f o r  such s t r u c t u r e .  To t e s t  t h i s  hypothesis,  t he  LiF 

window was removed from t h e  chamber so  t h e  e n t i r e  AgBr valence band 

could be  probed a t  room temperature.  The r e s u l t s  of t hese  studies are 

discussed i n  part B of t he  chapter .  

Our t e q e r a t u r e  

It i s  important t o  r e a l i z e  a t  t h e  ou t se t  t h a t  t h e r e  are, of course, 

hybridized s i l v e r  s t a t e s  which would be expected t o  exh ib i t  a t e q e r a t u r e  

dependence. A s  was pointed out i n  t h e  l a s t  c h q t e r ,  t he  energy of t h e  

s i l v e r  s t a t e s  are decreased when they  mix wi th  t h e  halogen p ' s  . This 

means t h a t  they  should occur deeper i n  t h e  valence band than t h e  "pure" 

s i l v e r  states. A s  w i l l  be seen i n  t h e  data presented i n  sec t ion  A> t h e  

threshold  i n  bo th  ha l ides  is such t h a t  a t  ll,3 e V  we can only probe a few 

t en ths  of a n  e V  below these  pure s t a t e s  and the re fo re  were unable to 

observe t h e  temperature dependence of t h e  hybridized d s t a t e s  e 



A. Teqperature Independent EDC S t ruc tu re  

I n  t h e  r ep resen ta t ive  EDCs presented i n  Fig. 6,1 f o r  AgBr it 
is seen t h a t  only c e r t a i n  t r a n s i t i o n s  sharpen d r a s t i c a l l y  upon cool ing 

t h e  sample. 

11.0 eV EDC from -3.7 eV i n  the  valence states shows no s i g n i f i c a n t  
change upon temperature v a r i a t i o n ,  This is i n  marked con t r a s t  t o  t h e  

The s t r u c t u r e  which emerges on t h e  t r a i l i n g  s i d e  of t h e  

tremendous sharpening of t h e  next highest  peak when it was near  thresh-  

o ld  a t  10.2 eV (see  Fig.  5 . 2 ) .  Note t h a t  thLs s t r u c t u r e  i n  Fig.  6~ 
n e i t h e r  sharpens nor does i t s  peak-to-val ley r a t i o  increase when t h e  

sample is  cooled t o  30°K. 

observed f o r  a l l  t h e  

This near  constancy with temperature v a r i a t i o n  of t h e  -3.7 eV peak is 

e s p e c i a l l y  evident  when the  intermediate  temperatures a r e  included i n  

Fig. 62. Note t h a t  t h i s  d a t a  was measured f o r  a d i f f e r e n t  sample from 

t h e  one used f o r  Fig.  6.1; t h i s  again emphasizes t h e  re:producibi l i ty  of 

t h e  s i l v e r  ha l ide  photoemission. I n  p a r t  (a )  of t he  f igure ,  t h e  ternpera- 

t u r e  independence of t h e  t r a i l i n g  peak a t  11.4 eV is p a r t i c u l a r l y  s t r i k -  

inge  It is  even more s i g n i f i c a n t  when one r e a l i z e s  t h a t  each EDC was 
independently normalized and t h e  energy s c a l e s  were chosen independently 

f o r  each se t  of EDCs a t  a f i x e d  temperature.  I n  part (b)  of t h e  f i g u r e  

t h e  changes i n  t h e  hybridized p-derived EDC s t r u c t u r e  i s  shown f o r  

c o q a r i s o n  a t  10e!3 eV. 

the  t r a i l i n g  -3.7 eV peak, which was discussed i n  Fig. 6 .2(a)  at 11.4 eV, 

is s t i l l  temperature indeypendent compared t o  t h e  o the r  s t r u c t u r e ,  This 

is not on ly  ev ident  from v i s u a l  inspec t ion  of t h e  EDC d a t a  b u t  a l s o  from 

numerical ana lys i s  of t h e  d a t a  c h a r a c t e r i s t i c s .  The s l i g h t  dependence 

of t h e  :peak's width on temperature was found t o  f i t  t h e  exponent ia l  

r e l a t i o n  of  Eq. (5.7) with c h a r a c t e r i s t i c  parameters Wo and C inc lu-  

ded i n  Table V.3 .  The important t h i n g  t o  note is t h a t  even though t h e  

zero width, Wo of 0,Zk  e V  i s  comparable to t h e  0.23 eV average value 

found for t h e  hybridized p-derived EDC s t r u c t u r e  for both AgBr ( " D f f >  

and A g C l  ( " - 2  .65ft), t h e  temperature dependence, C of 0.12 f o r  t h e  

-3.7 e V  peak is considerably less than  t h e  zz l / 3  

This is t h e  exact  converse of t h a t  which was 
AgBr s t r u c t u r e  below 10.6 e V  (see Chapter V ) @  

A t  t h e  l i m i t  of t he  measurement, hY = 11.3 eV , 

average value found 
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FIGURE 6,2 (a) Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc ident  photon) for e lec t rons  
photoemitted from AgBr a t  80 through ZE3ToK for a 
photon energy of  11.4 eV. 

0.03- 

e 

3 
E 
0 
0 c e 
E 
a3 

0 
C 
\ 
v) 
E 

c 

0.02 c 

'p 
.- 

2 + 
0 s 0.01 - 
z 

- AgBr -Ip- A 
hu= I 1.4 &' 

107°K 
135°K 
190°K 
245°K 

--- ---- ------ - --- 
2 8 5 0 ~  --- - 

- 

- 

- 

- 

0- - 
I I I I I I 

E,+ 7.0 8.0 9.0 10.0 11.0 



2 
c 
0 
0 
.s 
0 

C 
Q 
0 
0 
C 
\ 
Lo 
t 

c 

c 

.- 

.- 

2 
c u 
Q 
Q 
- 
Y 

z 

FIGURE 6 -2 (b) C o q a r i s o n  of energy d i s t r i b u t i o n s  normalized 
t o  quantum y i e l d  (per inc ident  photon) for 
e lec t rons  photoemitted from AgBr a t  80 through 
285OK for photon energ ies  of 10e3 and 11.8 eV. 

15 9 



f o r  t h e  :p-derived s t r u c t u r e .  If it i s  f u r t h e r  r e a l i z e d  t h a t  t h i s  0.12 

value is only about a f a c t o r  of two g r e a t e r  than  t h e  p rec i s ion  with 

which t h e  width can be  measured, it is reasonable t o  conclude t h a t  t h e  
t e q e r a t u r e  de:pendence of t h e  -3.7 eV AgBr peak is c h a r a c t e r i s t i c a l l y  

d i f f e r e n t  from t h a t  measured f o r  t h e  hybridized p-derived s t r u c t u r e ,  

It i s  i n t e r e s t i n g  t o  note  t h a t  s ince  t h e  width and peak-to-valley 

r a t i o s  a r e  r e l a t i v e l y  unaffected by temperature var ia t ion ,  t h e r e  is 

reason t o  expect t h a t  t h e  he ights  should be near ly  constant  when t h e  

r e f l e c t i v i t y  of t h e  sample is cor rec ted  f o r .  Since t h e  he ights  of t h i s  

peak are a l ready  cons tan t  wi th  temperature without tak ing  t h e  o p t i c a l  

p r o p e r t i e s  i n t o  account f o r  bo th  samples shown, one can conclude t h a t  

t h e  AgBr r e f l ec t ance  is r e l a t i v e l y  temperature independent from 

11.0 eV t o  12.0 eV. The l a c k  of sharp s t r u c t u r e  i n  a l l  EDCs above 

f i n d  s t a t e  energy of E = 9.5 e V  and the  temperature independence of 

t h i s  s t r u c t u r e  i s  probably due t o  a d i f f e r e n t  e f f e c t  and w i l l  be d i s -  

cussed f u l l y  i n  t h e  next  chapter .  

From the  s i m i l a r i t y  of t h e  AgCl and AgBr EDCs, a peak i n  the  

AgCl valence band d e n s i t y  of states can be i d e n t i f i e d  as be ing  r e l a -  

t ive ly  temperature independent I The corresponding peaks i n  t h e  AgCl 

EDC d a t a  occur f o r  e l ec t rons  exc i t ed  from -3.3 eV i n  t h e  valence states, 

though t h e i r  temperature independence is somewhat d i f f i c u l t  t o  observe 

because of f i n a l  s t a t e  e f f e c t s .  This peak emerges on the  t r a i l i n g  s ide 

o f  t he  11.1 eV EDC as seen  i n  t h e  high photon energy curves of Fig. 6.3. 
This d i f f i c u l t y  i n  observing i ts  temperature independence occurs be- 

cause  of t h e  enhancement of a l l  t h e  s t r u c t u r e  on t h e  low energy s ide  of 

t h e  EDCs. A s  was poin ted  out  i n  t h e  l as t  chgpter,  t he re  appears t o  be 

a terrperature de:pendent high f i n a l  dens i ty  of s t a t e  region around 3,l eV 

which causes a l l  s t r u c t u r e  a t  t h i s  energy to be enhanced at  30°K. 

i s  be t t e r  i l l u s t r a t e d  when t h e  intermediate  temperature d a t a  is included 

i.n F ig ,  6,4. 
of t h e  mC s t r u c t u r e  when it moves to energ ies  above 

second peak i n  t hese  EDCs (lf-2.65" i n  Table V.3)  shar'pens and i s  increased 

i n  he ight  by  about t h e  same amount at both 9.2 eV 

( i e e e ,  ht, = 11,4 eV and lle3 eV, r e spec t ive ly ) .  By con t r a s t ,  t he  

This 

The im.portant t h i n g  t o  note i n  t h i s  data is t h e  behavior 

E = 3*1 e V  e The 

E = 3.3 eV and 
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FIGURE 6.3 .  Coqparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per  inc ident  :photon) for e lec t rons  photoemitted from A g C l  at 
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FIGURE 6.4 a Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantun y i e l d  (pe r  inc ident  photon) f o r  e l ec t rons  
photoemitted from AgCl at 90 through Z90°K for 
photon energ ies  of  11.4 and 11.8 eV. 
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t r a i l i n g  -3.3 e V  peak height  increases  from 290 to '30°K by more than  

e i t h e r  of  t hese  when E = ?Ial eV (ice., hV = 11.4 eV) bu t  i s  enhanced 

not iceably  less when i t s  f i n a l  s t a t e  energy is ?Ie5 eV ( i*e . ,  hv = 11.8 eV). 

Thus, when t h e  e f f e c t s  around E = '3*1 e V  are taken i n t o  account, t h e  

t r a i l i n g  EDC s t r u c t u r e  photoexcited from -3.3 e V  i n  t h e  valence band 

appears to be  more independent of temperature than  the  peak exc i t ed  from 

-2.6 eV.  

t hese  peaks. To perhaps show t h i s  more c l ea r ly ,  the  he ights  of  t h e  

-3.3 e V  peaks at '30 K a r e  adjusted to be  equal  to t h e  corresponding 

he ights  a t  295'K i n  Fig.  6e5e  A s  can be seen i n  these  EDCs, t h e  widths 

and peak-to-valley r a t i o s  a r e  much more temperature independent f o r  t h e  

t r a i l i n g  peak t h a n  t h e  neighboring one. Note t h a t  any changes which may 

occur i n  t h i s  -3.3 eV peak upon cool ing happens on i t s  r i g h t  s i d e  where 

t h e  temperature changes of t h e  neighboring peak w i l l  inf luence i ts  shape. 

The temperature independence of t h e  width and peak-to-valley r a t i o  of 

This i s  t r u e  f o r  bo th  t h e  widths and peak-to-valley r a t i o s  of 

0 

t h i s  -3 .3 eV EDC s t r u c t u r e  is most similar to t h e  -3.7 e V  s t r u c t u r e  i n  

t h e  AgBr da ta .  It is thus  reasonable to conclude t h a t  both of t hese  

valence band d e n s i t y  of states regions have s i m i l a r  c h a r a c t e r i s t i c s  and 

o r i g i n s  e 

From t h e  above d i scuss ion  it is evident t h a t  t h e r e  i s  a peak i n  t h e  

EDCs of bo th  AgBr ( i e e a ,  -3.7 eV) and AgCl (i.e.,  -3.3 eV)  which 

e x h i b i t s  a s u b s t a n t i a l l y  smaller dependence on temperature than  the  t h r e e  

higher  energy p ieces  of s t r u c t u r e  i d e n t i f i e d  with t h e  halogen p-derived 

valence s t a t e s  i n  t h e  last  chapter .  I n  order  t o  determine t h e  o r i g i n  of 

t hese  new peaks, it i s  h e l p f u l  to make use of publ ished es t imates  of t he  

e l e c t r o n i c  s t r u c t u r e .  A s  was discussed i n  d e t a i l  i n  Chapter 111, t h e r e  

i s  a l a r g e  amount of t h e o r e t i c a l  evidence t h a t  t h e  Ag 4d s t a t e s  l i e  

lower i n  energy than  t h e  halogen p-derived s ta tes  i n  both AgBr and 

~ g ~ 1 ~ ~ , ~ 9 ~ ~  A s  w i l l  be  shown i n  Chapter V I I I ,  t h e  regions under con- 

s i d e r a t i o n  i n  bo th  AgBr and A g C l  l i e  p rec i se ly  where the  very f l a t  

Ag 4d s t a t e s  have been placed i n  t h e  work of Bassani, Knox, and 

Fowlerm3 

l a t i o n  of Scop, t h e  discrepancy w i t h  our experimental  peaks is the same 

f o r  bo th  ha l ides  (= 21%). 

Even though t h i s  reg ion  has t o o  high an energy i n  t h e  calcu- 
6 

Because these  a r e  t h e  only band es t imates  



FIGURE 6 "5  e Comparison of energy d i s t r i b u t i o n s  for e lec t rons  photoemitted 
from AgCl 
(normalized t o  quantum y i e l d  per  inc ident  photon) and 30°K (un- 
normalized with t h e  -3.3 eV peak height  ad jus ted  t o  t h e  value of t h e  
corresponding 2 B o K  peak) 

f o r  photon energ ies  of 11.6 through llo8 e V  a t  295OK 
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which a r e  t h e  r e s u l t  of  d e t a i l e d  ca lcu la t ions ,  it is useful  t o  examine 

t h e  c h a r a c t e r i s t i c s  of t h i s  very narrow, v i r t u a l l y  k-independent f l a t  

band region.  

ha l ides log  thereby  producing a high dens i ty  of s t a t e s .  

corresponding t o  such states should o r i g i n a t e  from t h e  same i n i t i a l  

energy for a l l  hV e This can be e a s i l y  t e s t e d  by sub t r ac t ing  t h e  

These bands a l l  l i e  w i th in  a range of 0.26 e V  f o r  both 

The EDC s t r u c t u r e  

photon energy from t h e  f i n a l  s ta te  energy t o  form a p l o t  of t h e  EDCs as 
a func t ion  of i n i t i a l  s ta te  energy, This is done f o r  some of t h e  &Br 

data of Fig.  6.1 i n  F ig .  6.6. 
independent EDC peak gppears t o  o r i g i n a t e  a t  -3.7 eV f o r  a l l  t h e  curves.  

Further,  t h e  zero  temperature width of 0.24 e V  determined f o r  t h i s  peak 

(see Table V.3) is q u i t e  c l o s e  t o  t h e  ca l cu la t ed  0.26 e V  width of t h e  

f l a t  band states.  log 

g r e a t e r  than  90% d-charac te r  i n  bo th  

f l a t  band s ta tes  a r e  p r imar i ly  unhybridized Ag states with almost 

pure 4d symmetry. A s  noted i n  t h e  in t roduct ion  t o  t h i s  chaqter, t h e  

EDC s t r u c t u r e  corresponding t o  such states would be  expected t o  be 

l a r g e l y  temperature independent by t h e  dynamic hybr id iza t ion  model. 

Thus, t h e  c h a r a c t e r i s t i c s  of t h e  d a t a  a re  cons i s t en t  with t h e  p rope r t i e s  

of t h e  s i l v e r  ha l ide  f l a t  band region, lo9 which occurs a t  the  same energy 

as t h e  experimental  peaks i n  energy band es t imates  based on t h e  measured 

o p t i c a l  properties of t hese  s 0 1 i d s . ~  

a s s o c i a t e  t h e  -3.7 eV peak i n  AgBr and -3.3 eV peak i n  A g C l  wi th  

pho toexc i t a t ion  from Ag states with almost pure 4d symmetry. The 

small number of  hybridized s t a t e s  which occur a t  t h i s  same energy 

could account f o r  t h e  very small temperature dependence measured f o r  

t h i . s  s t r u c t u r e  i n  AgBr (see Table V . 3 ) .  The EDC s t r u c t u r e  from valence 

s ta tes  higher  t h a n  t h e s e  energ ies  corresponds t o  e x c i t a t i o n  from hybrid- 

ized, p-derived halogen s t a t e s  * 

As can be  seen, t h e  l a r g e l y  temperature 

Over 3/4 of t h e  states wi th in  t h i s  range have 

AgCl and AgBr e log Thus, t h e  

It i s  the re fo re  reasonable t o  

109 

B e  AgBr EDCs f o r  Photon Energies Above 11.9 eV 

It is  very u s e f u l  

only t o  determine more 

t h e  assignments of t h e  

t o  be  ab le  t o  probe t h e  e n t i r e  valence band not 

e l e c t r o n i c  s t a t e  f e a t u r e s  b u t  a l s o  t o  s u b s t a n t i a t e  

u l t r ah igh  vacuum EDC s t r u c t u r e .  The EDC s t r eng th  
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FIGURE 6.6 e Comparison of energy d i s t r i b u t i o n s  normalized to 
quantum y i e l d  (pe r  inc ident  photon) for e lec t rons  
photoemitted from AgBr at 80 and 2B°K for photon 
energ ies  of 11.0 through 11.9 eV. 
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of var ious  regions of  t h e  band s t r u c t u r e  can be  studied, and t h e  behav- 

i o r  of t h e  s t r u c t u r e  with hV v a r i a t i o n  can be examined over a g r e a t e r  

photon energy range. 

l i m i t e d  by  t h e  sum of t h e  e l e c t r o n  a f f i n i t y  and bandgap of t h e  s i l v e r  

ha l ide  and t h e  LiF chamber window cu to f f .  A s  d iscussed i n  Chapter IV, 

t h e  a t tempts  to lower t h e  th re sho ld  by covering t h e  sur face  wi th  a mono- 

l a y e r  of cesium f a i l e d  because t h e  cesium reac ted  with t h e  s i l v e r  ha l ide  

sample [see Fig.  4 .32(b) Ie  

surement was increased by removing t h e  LiF window from t h e  chamber 

while it was a t tached  t o  t h e  monochrometer. This was done by having t h e  

window mounted on a thin-wal led g l a s s  tube (0.002'' t h i c k )  and then using 

a b lade  mounted on a l inear  motion' to break  t h e  window of f  t h e  chamber. 

(For d e t a i l s ,  see re ference  35*) The major shortcoming of t h i s  pro- 

cedure is  t h a t  t h e  sample could not be cooled below room temperature 

because of  t h e  adsorpt ion of o i l  and o the r  contaminants from t h e  poor 

monochrometer vacuum. If t h e  u l t r a -h igh  vacuum r e s u l t s  a r e  compared t o  

t h e  windowless d a t a  below 11.8 eV i n  Fig.  6.7, it is c l e a r  t h a t  t h i s  

vacuum environment lowers t h e  threshold  for photoemission and causes 

s c a t t e r i n g  of t h e  high energy e l ec t rons  which l eads  t o  smeared out 

s t r u c t u r e  above about E = 9 eV e The impcrtant t h ing  is t h a t  t he  EDC 
s t r u c t u r e  a l l  c o r r e l a t e s  i n  t h e  two s e t s  of d a t a  as is seen i n  t h e  

f i g u r e .  It should be noted t h a t  t h e  energy sca l e s  were determined inde- 

pendently f o r  each s e t  of d a t a  and f o r  t h e  e n t i r e  s e t  of curves r a t h e r  

than each curve ind iv idua l ly .  By removing t h e  window, we could take  

advantage o f  h igher  energy l i n e s  i n  the  gas spec t r a .  I n  pa r t i cu la r ,  

has near ly  a continuum up t o  around 14.0 eV. Neon has i t s  s t ronges t  

t r a n s i t i o n s  a t  1-6~8 e V  with a very weak l i n e  around 14.7 eV. 

t h e  pressure o f  Ne i n  t h e  lamp by an order  of magnitude, some of t h e  

o s c i l l a t o r  s t r eng th  is t r a n s f e r r e d  i n t o  a h igher  energy 26.8 e V  t r a n s i -  

tion.'" This was t h e  f i r s t  time t h i s  high energy l i n e  was used i n  t h i s  

labora tory .  H e l i u m  has a very s t rong  l i n e  a t  21.2 eV with a much weaker 

one a t  23.1 eV. has  t r a n s i t i o n s  around 13.5 eV bu t  t hese  a re  weak 

and t h e  discharge is d i f f i c u l t  t o  s t a b i l i z e .  The r e l a t i v e  s t r eng th  of 

t hese  weaker l i n e s  is 9:3:1*5:1 f o r  23.1 ev:26.8 e V ~ l 8 ~ 5  eV:14.7 eV; it 

The depth of t h e  band which can be  probed i s  

Therefore, t h e  photon energy range of mea- 

HZ 
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FIGURE 6,7* Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  ( p e r  inc ident  photon) for e lec t rons  photoemitted from a AgBr 
u l t r a h i g h  vacuum sample (11-D) and one exposed t o  t h e  monochromator 
vacuum ( I V - A )  a t  2S°K for photon energ ies  of 10,2 and 1la3 eV. 



i s  d i f f i c u l t  t o  ob ta in  meaningful EDCs with t h e  weakest two of these  

l i n e s  a 

One of t h e  f i r s t  th ings  we can s tudy with these  high energy AgBr 
EDCs is t h e  behavior of t he  -3.7 eV peak, discussed i n  sec t ion  A, over 

a wide range o f  energ ies ;  t h i s  un-normalized d a t a  is  presented i n  
Fig.  6.9. 
t h e  o r i g i n  f o r  t h i s  peak i n  t h e  low energy, temperature dependent data 

of Fig. 6.6. 
f o r  a l l  photon energ ies  u n t i l  t h e  peak becomes a shoulder due t o  sca t -  

t e r i n g .  

w e l l  by having a high dens i ty  of s t a t e s  at -3.7 eV i n  t h e  AgBr valence 

band. This i s  cons i s t en t  wi th  t h i s  s t r u c t u r e  o r ig ina t ing  from r e l a -  

t i v e l y  unmixed s t a t e s  which should not produce t e e p e r a t w e  dependent 

EDC s t r u c t u r e  and the re fo re  cons i s t en t  with t h e  assignment of it t o  Ag 

s t a t e s  wi th  almost p u r e  4d symmetry. 

A dashed l i n e  has been drawn a t  the  -3.7 e V  energy which was 

A s  can b e  seen, t he  peaks are a l l  loca ted  on t h i s  l i n e  

The behavior  of t h i s  EDC s t r u c t u r e  can then  be  explained q u i t e  

The peak which emerges on t h e  l e f t  s i d e  of  t h e  EDCs i n  Fig.  6*8, 
a l s o  appears t o  o r i g i n a t e  from one energy i n  t h e  valence band f o r  a l l  

photon energies ,  once it has emerged from t h e  inf luence of t h e  threshold;  

t h i s  is  q p a r e n t  i n  t h e  h igher  energy un-normalized d a t a  of Fig.  6.9. 
We can thereby  i d e n t i f y  another r eg ion  of high e l e c t r o n i c  s t a t e  dens i ty  

a t  -5.0 eV. It should be  noted t h a t  t h i s  energy band s t r u c t u r e  would 

not  have been i d e n t i f i e d  without t hese  windowless measurements e The 

:peak which emerges on t h e  l e f t  s i d e  of t hese  EDCs is due t o  s c a t t e r e d  

e l e c t r o n s  emerging above t h e  threshold .  This w i l l  be c l e a r  from the  

h igher  energy d a t a  t o  be  presented  next,  

By going t o  much higher photon energies,  t h e  e n t i r e  valence band 

can be seen d i r e c t l y ;  such d a t a  i s  presented i n  Fig.  6.10. The very 

s t rong  peak on t h e  l e f t  s ide  of t h e  EDCs is. j u s t  t h e  s c a t t e r i n g  peak 

which we f i r s t  noted a t  13.5 e V  i n  Fig. 6.9. 
t h e  e l ec t ron -e l ec t ron  s c a t t e r i n g  s ince  it always qspears at th reshold .  

The o t h e r  s t ruc tu re ,  which was expanded i n  the  o r i g i n a l  data and is 

reproduced here, i s  due t o  e x c i t a t i o n  from the  e n t i r e  Br 4 p  and Ag 4d 

der ived  valence band (see F ige  3.1). 
occurs a t  p r e c i s e l y  -5.0 eV i n  a l l  t hese  high energy curves.  If we 

It can b e  i d e n t i f i e d  with 
36 

The peak i n  t h i s  p a r t  of  t h e  E D C s  
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FIGURE 6.9, Comparison of  un-normalized energy d i s t r i b u t i o n s  f o r  
e l e c t r o n s  photoemitted from A g B r  at  295'K f o r  photon 
energ ies  of 11.6 through 12.4 eV.  
an e l e c t r o n  energy of -3.7 eV. 

A l i n e  i s  shown at  
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FIGURE 6.9. Comparison of un-normalized energy d i s t r i b u t i o n s  for 
e lec t rons  photoemitted from AgBr a t  295°K for photon 
energ ies  of 12,7 through 14,O eV. 
an e l e c t r o n  energy of  -5.0 eV. 

A l i n e  i s  shown at 



FIGURE 6 .Lo(a) e Consparison of un-normalized energy d i s t r i b u t i o n s  f o r  
photoemitted from AgBr 
21.2 eV. Par t  of each curve i s  ex'panded by t h e  f a c t o r  shown. 

a t  2B°K for photon energies  of 16e3 and 
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FIGURE 6.10(b) e Comparison of un-normalized energy d i s t r i b u t i o n s  f o r  
e l ec t rons  photoemitted from AgBr a t  Z B ° K  f o r  photon energies  of 
23.1 and 26.8 eV. P a r t  of each curve i s  expanded by t h e  f a c t o r  shown. 
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examine part (a )  i n  d e t a i l ,  a second piece of s t r u c t u r e  occurr ing at 

-3-7 e V  is  c l e a r l y  evident  a t  hV = 21.2 eV These -5.0 and -3.7 e V  

structures are t h e  regions of high s ta te  dens i ty  determined from t h e  

previous two f i g u r e s .  It is important t o  note t h a t  t h e  area under 

t h e s e  two pieces  of s t r u c t u r e  i n  p a r t  (a) is more than  h a l f  t h e  t o t a l  

area under t h i s  p a r t  of t h e  EDC. This i s  s i g n i f i c a n t  because i n  t h e  

high photon energy data,  t h e  EDC s t r u c t u r e  o r i g i n a t i n g  from 
states may be  s t ronge r  than  t h e  Br hp  der ived  structure. Such a 

s t r e n g t h  r a t i o  is expected s ince  t h e  matrix elements of t he  d s ta tes  

should increase wi th  t h e  increased photon energy, and a l s o  the re  are 

four  more d than  p e l ec t rons .  111 Thus, we expect t he  -3.7 eV AgBr 

s t r u c t u r e  t o  o r i g i n a t e  from t h e  s i l v e r  d s ta tes  because of i t s  s t r eng th  

a t  h igh  photon energ ies  (e.g., 

ture  independence a t  lower hV * The -5.0 e V  s t r u c t u r e  would a l s o  appear 

t o  correspond t o  d s t a t e  e x c i t a t i o n s  by such cons idera t ions ,  These 

states a re  probably hybridized wi th  t h e  halogen p o r b i t a l s  s ince  t h e  

d s t a t e s  which mix with t h e  halogen p ' s  a r e  decreased i n  energy r e l a -  

t i v e  t o  the  pure Ag d s t a t e s 3  which we loca ted  at -3.7 e V  i n  s e c t i o n  A. 

It is i n t e r e s t i n g  t o  note t h a t  t h i s  -5.0 eV s t r u c t u r e  was j u s t  being seen 

near  th reshold  a t  
4 ,20(a) ,  4.29, and 6.1. This i s  f u r t h e r  evidence t h a t  t he  windowless 

measurements a r e  c h a r a c t e r i s t i c  of AgBr . 

Ag d 

hV = 21.2 e V  ) as w e l l  as i t s  tempera- 

hV = 11.3 e V  i n  the  u l t r a h i g h  vacuum d a t a  of Figs .  

As can be seen i n  Figs. 6.1o(a) and (b),  t h i s  -5.0 eV peak is t h e  

last  s t r u c t u r e  which is  c h a r a c t e r i s t i c  of t h e  valence s t a t e s  of AgBr . 
It can, therefore ,  be ex t rapola ted  t o  y i e l d  an estimate of t h e  valence 

band width.  This is &own by  t h e  s t r a i g h t  l i n e  on t h e  l e f t  s i d e  of t h e  

12.7 e V  EDC i n  Fig.  6,9, 
is about 6.0 e V  wide i n  AgBr . Tl;e widths of t h e  high energy EDC 

expansions i n  Fig. 6.1O(a) also i nd ica t e  t h a t  t h e  valence band is approxi- 

mately 6.0 eV wide, 

Fig.  6.10(a) s ince,  as noted above, t h e  photon energiesof  16.9 and 21,2 e V  

are due t o  very s t rong  l i n e s  i n  Be and He ; thus,  t h e  EDCs taken at  

t h e s e  energ ies  and displayed i n  part  (a)  were v i r t u a l l y  noise  f r e e .  On 

t h e  o t h e r  hand, t h e  second order  23.1 and 26e3  eV l i n e s  were a t  l e a s t  

From t h i s  we can deduce t h a t  t he  valence band 

We have placed p a r t i c u l a r  emphasis on p a r t  (a) of 



two o rde r s  of magnitude less in tense  than  t h e s e  l i n e s  and t h e  raw EDCs 

corresponding t o  part  (b) were very noisy.  

f o r e  serve only t o  show t h a t  t h e  c h a r a c t e r i s t i c s  a t  16e3 and 21.2 eV a re  

also present  a t  higher  energ ies .  

The EDCs of p a r t  (b)  t he re -  

These windowless s t u d i e s  were only performed f o r  AgBr because of 

t h e  expense of t h e  "one-shot" LiF window, t h e  t i m e  and expense involved 

i n  having t o  completely c l ean  t h e  chamber and f l ange  from o i l  contamina- 

t i o n  following each experiment, and t h e  t i m e  necessary t o  do such addi- 

t i o n a l  experiments. The important information which was determined f o r  

AgBr can be used as a f u r t h e r  j u s t i f i c a t i o n  t h a t  t he  near ly  temperature 

independent structure f o r  a l l  t h e  s i l v e r  ha l ides  is due t o  t r a n s i t i o n s  

from Ag states with almost pure kd symmetry and t o  thereby f u r t h e r  

support  t h e  dynamic hybr id i za t ion  model f o r  s i l v e r  ha l ide  photoemission. 



V I I e  THE ELECTRONIC CONDUCTION STATES OF 

AgBr AND A g C l  

I n  t h e  previous two chapters ,  we discussed t h e  most predominant 

features of t h e  temperature dependent data.. 

hybr id i za t ion  model was used t o  expla in  t h e  s t rong  temperature depen- 

dence of EDC peak widths, and t h i s  s t r u c t u r e  was shown t o  be  due t o  

e x c i t a t i o n s  from hybridized halogen p-derived s t a t e s  This was extended . 
i n  Chapter V I  t o  l o c a t e  t h e  A g  s ta tes  with almost :pure 4d symmetry 

by t h e  teFpera ture  independence of t h e  corresponding EDC s t r u c t u r e .  

These features of  t h e  d a t a  have a l l  been c h a r a c t e r i s t i c  of t h e  complex 

valence band s t r u c t u r e  and were used t o  understand these  e l e c t r o n i c  

states, There a re  two o the r  major f e a t u r e s  of t h e  s i l v e r  ha l ide  d a t a  

which a r e  r e l a t e d  to t h e  c h a r a c t e r i s t i c s  of t h e  conduction band s t ahes  

and have only been a l luded  to i n  t he  previous d iscuss ions .  The apparent 

occurrence of temperature delpendent f i n a l  dens i ty  of s t a t e s  s t r u c t u r e  

and t h e  weakness and temperature independence o f  a l l  EDC s t r u c t u r e  with 

high f i n a l  s ta te  energ ies  w i l l  be  examined i n  d e t a i l  i n  t h i s  chapter  i n  

sec t ions  A and B, r e spec t ive ly .  

I n  Chzpter V, t h e  dynamic 

A. The Halogen d-Derived Conduction S t a t e s  

I n  both  AgBr and A g C l  t h e r e  ?p:pears to be  EDC s t r u c t u r e  which 
0 

occurs a t  a fixed f i n a l  s ta te  energy only at 90 K.. 
s t r u c t u r e  q o n  cool ing is  p a r t i c u l a r l y  s t r i k i n g  i n  t h e  AgBr high 

:photon energy d a t a  of  Fig. 6.1; a po r t ion  of t h i s  d a t a  is reproduced i n  

Fig. 7.1. 
t h e  f i n a l  s t a t e  energy of t h e  e l ec t rons .  A dashed l i n e  has been drawn 

a t  a f i n a l  s ta te  energy of about 9-9 eV to show t h e  enhancement of a l l  

EDC s t r u c t u r e  wi th  t h i s  energy a t  low temperatures.  

The appearance of 

This i s  t h e  same as Fig.  6.6 only p l o t t e d  as a func t ion  of 

P e r h q s  t h e  most 

dramatic imani fes ta t ion  of  t h i s  i s  the  occurrence of an add i t iona l  

at 90 K for hV = 11.4 eV ; f o r  11.3 eV, t h i s  enhancement appears 

an enlargement of a peak which is ,present at 295 K and is t h e  only 

0 

0 

peak 

as 



c 
B 

c 
Q, 
0 
0 
6 

\ 
m c 

4- 

.- 

.- 

c 
0 
Q) 

Q) 
e 

v 

0. 

0.02 

0.0 

0 

0 

0 
I 

FIGURE 7.1. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc ident  photon) f o r  e l ec t rons  
photoemitted from AgBr at 90 and 295OK for 
photon energ ies  of 11.0 through 11.9 eV. 
i s  shown at an e l e c t r o n  energy of about 9.8 eV. 
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temperature dependent change of  t h e  EDC. It is  c l e a r  t h a t  t hese  changes 

a r e  due to t h e  appearance of a new f i n d  dens i ty  of states region by 

examining t h e  detailed temperature evolu t ion  of t h e  new 11-4 e V  peak 

from a v a l l e y  at 295 K; such d a t a  was presented i n  Fig.  6.2(a) and is 

reproduced here  as Fig.  7.2 f o r  easy  re ference .  
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FIGURF: 7.2 e Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (pe r  inc ident  :photon) for e lec t rons  
photoemitted from AgBr a t  30 through 2$OK f o r  
a photon energy of 11.4 eV.  



The cen te r  peak wi th  two s i d e  shoulders  a t  90°K is not as c l e a r  

f o r  t h i s  sample as it was f o r  o the r s .  A comparison with sharper  d a t a  

was shown i n  F igo  4.20(a) where t h e  s l i g h t  broadening of sample IV-A 

i s  evident ;  however, t h e  t r end  of what i s  occurr ing is s t i l l  qu i t e  

c l e a r  f o r  t he  d a t a  of Fig.  7.2, I n  warming jus t  55' above 9O0K t h e  low- 

temperature peak has lost most of i t s  s t r eng th  s o  t h a t  what had been t h e  

l e f t  shoulder is now t h e  EDC peak, By very c a r e f u l l y  ad jus t ing  t h e  

temperature halfway between these  two values  (10Y0K),  both of these  

pieces  of  s t r u c t u r e  a r e  c l e a r l y  evident  as is seen i n  Fig. 7.2. This 

new 30°K s t ruc tu re ,  which is only a shoulder  a t  135OK, completely d i s -  

appears when t h e  temperature is r a i s e d  above t h e  Debye temperature 

(BD = 144'~) t o  190°K. 
I n  order  t o  understand t h i s  dramatic temperature change i n  the  

conduction band d e n s i t y  of states, t h e  e l e c t r o n i c  s t r u c t u r e  must be 

examined i n  d e t a i l .  Based on t h e  dynamic hybr id iza t ion  model, one can 

hypothesize t h a t  t h i s  i s  caused by a high dens i ty  of hybridized states 

which occurs at a f i n a l  state energy of 3.3 e V  when t h e  l a t t i c e  is 

f rozen  but i s  so considerably broadened a t  e leva ted  temperatures t h a t  

. Unfortunately, no d i s t i n c t i v e  FDC s t r u c t u r e  is observed above 

the  bands f o r  t h e  s i l v e r  ha l ides  have not  bezn ca lcu la ted  at such high 

energ ies  s o  t h i s  hypothesis cannot be t e s t e d  i n  d e t a i l .  It can be es t i -  

mated, however, t h a t  t h e  halogen d s t a t e s  and t h e  Ag 5p states, which 

have h igher  energies ,  bo th  l i e  around 9 eV above t h e  h ighes t  f i l l e d  

states i n  AgBr (see re ferences  3 and 41) .  To determine how such states 

would look  i n  t h e  band s t ruc tu re ,  w e  can make an analogy t o  t h e  conduc- 

t i o n  s t a t e s  of L i C l  ca l cu la t ed  by Kunz and shown i n  Fig. 7.3. The 

atomic des igna t ions  refer  t o  t h e  o r b i t a l s  from which t h e  states at  I' 
and t h e  bands emanating from t h i s  po in t  are der ived.  A s  i n  t h e  case of 

t h e  s i l v e r  ha l ides ,  t h e  circumstance exis ts  where t h e  me ta l l i c  p band 

[ i n  t h i s  case L i  (2p)  1 l i e s  just  a b i t  h igher  than  t h e  halogen d 

band [ i n  t h i s  case The important t h i n g  t o  note is t h a t  t h i s  

i s  completely analogous t o  t h e  p and d valence s t a t e s  of t he  s i l v e r  

ha l ides  i n  t h a t  t h e  o r b i t a l s  a r e  of t h e  proper spec ies  and c lose  enough 

i n  energy t o  s i g n i f i c a n t l y  mix and produce hybridized s t a t e s .  

OD 

112 

Cl (3d) I .  

Then by 
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FIGURF 7.3. The e l e c t r o n i c  conduction band s t r u c t u r e  of L i C l  
ca l cu la t ed  by Kunz ( re ference  1 1 2 ) .  
des igna t ions  a r e  t h e  o r b i t a l s  from which t h e  s ta tes  
a t  I? a r e  derived. 

The atomic 

t h e  dynamic hybr id i za t ion  model f i r s t  discussed i n  Chapter I T j  t he  

energ ies  of t hese  conduction states w i l l  be very dependent on t h e  v ibra-  

t i o n s  of t h e  l a t t i c e  and hence t h e  temperature of t h e  s o l i d .  A s  seen 

i n  F igo  7.3 f o r  L i C l  t h i s  p-d mixing produces a l a rge  number s t a t e s  

which converge i n  a small energy range (around 14 eV) a t  I? . It is 

important t o  r e a l i z e  t h a t  t hese  s t a t e s  do not con t r ibu te  s t rong ly  t o  t he  

photoemission s ince  t h e  dens i ty  of states goes t o  zero at  I' e The 

bands which move away from I' can form a l a r g e  number of states over a 

small energy range and thus  l ead  t o  a l a r g e  dens i ty  of  states region.  

Since most of  t h e  states which compose t h i s  region are hybridized, when 

t h e  temperature is near enough t h e  Debye value t o  cause s i g n i f i c a n t  



l a t t i c e  v ibra t ions ,  t hey  w i l l  broaden considerably and not necessa r i ly  

uniformly about t h e  same energy. Thus, they  may very we l l  l e a d  t o  a 

very broad continuum dens i ty  of f i n a l  s ta tes  at room temperature and 

not produce any d i s t i n c t i v e  EDC s t r u c t u r e  e f f e c t s  a t  e leva ted  tempera- 

t u r e .  Though much of t h i s  i s  speculat ive,  it is based on t h e  known 

gene ra l  cha rac t e r  of t h e  s i l ve r  ha l ide  conduction states and seems t o  

be t h e  most plausible  explanat ion f o r  t h e  observed EDC c h a r a c t e r i s t i c s *  

As has  been poin ted  out i n  t h e  :previous two chapters,  a tempera- 

t u r e  dependent f i n a l  dens i ty  of s t a t e s  a l s o  a f f e c t s  t h e  AgCl EDCS 

s i g n i f i c a n t l y  a t  

energy range i n  Fig. 7.4. 
t h re sho ld  of t h e  10.3 eV EDCs ( i . e . ,  -2.65 eV) is examined, one can see  

t h a t  i t s  s t r e n g t h  a t  80°K is s i g n i f i c a n t l y  enhanced over t h e  2B°K 
height  when E = 3.1 e V  ( i . e e ,  f o r  hV = 10.8 eV ); when i ts  f i n a l  

s t a t e  energy is below 8.1 e V  ( i . e e ,  

( f e e . ,  hV = 11.3 and 11e8 e V  ), t h e  increase  qpon cool ing is much 

l e s s .  

E = 8el e V  

temperatures included i n  F ig .  5 .lO(a) .) 
t h i s  -2.65 eV peak modulation can c l e a r l y  be  seen  to be  simply a height  

change by ana lys i s  of  t h e  peak width by Eq. (5.7) e 

parameters i n  Table V.3 are c h a r a c t e r i s t i c  o f  t h i s  A g C l  peak when i t s  

f i n a l  s ta te  energy i s  gel eV.  

pendence, C , is wi th in  t h e  range of values determined f o r  t h i s  peak 

at  a l l  hV but t h e  zero  temperature width, Wo , appears t o  be con- 

s ide rab ly  reduced a t  t h i s  energy. These c h a r a c t e r i s t i c s  of t h e  parame- 

t e r s  a r e  ind ica t ive  of having increased t h e  peak height  s o  t h a t  t he  

width at a fixed f r a c t i o n  of t h a t  height  ( i e e e ,  90%) w i l l  be l e s s  but 

y e t  w i l l  e x h i b i t  t h e  same dependence on T as found f o r  all o the r  f i n a l  

s t a t e  energ ies  and thereby be ing  c h a r a c t e r i s t i c  of  t he  valence s ta tes  e 

E = 8.1 e V  These EDCs are summarized over a wide 

If t h e  peak which f i rs t  appears near  t h e  

hV = 10.3 e V  ) o r  above t h i s  value 

(The modulation of  t h i s  particular peak as it moves through 

can be examined i n  d e t a i l  i n  Fig. 5.9 with intermediate  

The teqpera ture  dependence of 

The hV = 10-8 eV 

They ind ica t e  t h a t  t h e  temperature de- 

The second peak which emerges at 11.3 eV i n  F igo  7.3 ( i . e e ,  -3.3 e V )  

s i m i l a r l y  shows an increased 80°K height  only a t  t h e  same 8el e V  f i n a l  

state energy; t h i s  can be seen by i t s  decrease a t  

peak's temperature dependent behavior over a f i n e r  photon energy g r i d  

hV = 11.8 e V  (This 



FIGURE 7.4. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum yield. (per  inc ident  photon) f o r  e l ec t rons  
photoemitted from AgCl a t  30 and2B°K f o r  photon 
energ ies  of  10.3 through llw8 eve 



was 'presented i n  Fig. 6,3 with intermediate temperatures included i n  

Fig. 6.4.) 
p a r t i c u l a r  "pure" d p iece  of s t r u c t u r e  does not show any shw.pening o r  

peak-to-valley r a t i o  changes with temperature a t  any f i n a l  s t a t e  energy 

(see Chapter V I ) .  

height  changes a re  c h a r a c t e r i s t i c  of conduction s t a t e  changes s ince  the  

o the r  -3.3 eV peak parameters a re  T 

i s t i c  of t he  valence s t a t e s .  

produce s h i f t s  i n  t h e  peak p o s i t i o n s  upon cooling as w a s  seen f o r  t h e  

low photon energy s t r u c t u r e  i n  Fig. 5.10(b) a 

t he  peak height  enhancement (Fig.  5 * 3 )  as would be expected. It is  

reasonable to assume t h a t  t h i s  8.1 eV region is  composed of hybridized 

halogen d-derived s t a t e s  ( C 1  3d) which a re  mixed with t h e  

s t a t e s  as  was s i m i l a r l y  hypothesized f o r  AgBr above, 

I n  con t r a s t  to t h e  -2 6 eV peak discussed above, t h i s  

This i s  a f u r t h e r  i nd ica t ion  t h a t  t h e  loca l i zed  

inde;pendent and thus  character-  

This f i n a l  s t a t e  region of 9.1 eV can a l s o  

This s h i f t i n g  accompanied 

Ag 5p empty 

It should be noted t h a t  we have already observed t h a t  t h e  s t rength  

This of t h e  dens i ty  of hybridized s t a t e s  can be temperature dependent. 

was found to be t h e  case f o r  t h e  f i l l e d  valence s t a t e s  of both AgBr 

and AgCl i n  Chapter V. It was seen t h a t  t h e  EDC s t r u c t u r e  on the 

lead ing  s i d e  of t h e  'EDCs would undergo a r e v e r s a l  i n  t h e i r  r e l a t i v e  

he ights  upon cool ing to 90°K. This was most evident for AgBr at about 

hV = 9.6 eV 

i n  Fig.. 5.9. 
occurred gradual ly  as was seen i n  F igs ,  5.3 and 5. lO(a)  f o r  

A g C l  , respec t ive ly .  Thus t h i s  temperature dependent peak height  modu- 

l a t i o n ,  which was c h a r a c t e r i s t i c  of the  valence s t a t e s ,  is t h e  same 

occurrence as t h e  temperature dependent f i n a l  dens i ty  of s t a t e s  we have 

been d iscuss ing  i n  t h i s  s ec t ion .  It is thus reasonable t h a t  s imi l a r  

mechanisms based on t h e  dynamic hybr id iza t ion  model should explain both 

phenomena, as we hypothesized. 

as shown i n  Fig. 5 .1  and f o r  AgCl a t  10.4 eV as depicted 

This temperature dependence of t h e  dens i ty  of s t a t e s  height  

AgBr and 

\ 

B. The Ag 5p-Derived Conduction S t a t e s ?  

There is s t i l l  one major f ea tu re  of t h e  EDCs of both ha l ides  which 

we have not discussed. A s  can be e a s i l y  seen a t  high photon energies  

i n  Figs.  6.1 and 6.3 for AgBr and AgCl , respect ively,  t he re  q p e a r s  



to be two d i s t i n c t  f i n a l  s t a t e  energy regions over which t h e  charac te r  

of t h e  s t r u c t u r e  and i t s  temperature dependence a re  qu i t e  d i f f e r e n t ,  

A t  low energies ,  t h e r e  i s  s t rong  s t r u c t u r e  ( i . e e ,  peaks), which sharpens 

by varying amounts while at higher  f i n a l  s t a t e  energies,  t h e  s t r u c t u r e  

is  c h a r a c t e r i s t i c a l l y  weak ( i . e  e ,  shoulders)  and shows v i r t u a l l y  no 

change with temperature va r i a t ion .  The t r a n s i t i o n  between these  two 

regions is r e a l l y  q u i t e  d i s t i n c t .  There i s  a sharp peak on t h e  lead ing  

s i d e  of t he  EDCs a t  30°K which over just a 0.2 eV photon energy increase 

abrupt ly  becomes a shoulder .  A s  seen i n  Fig.  5.2, t h i s  occurs f o r  AgBr 

between hV = 10.2 and 10.4 eV for s t r u c t u r e  o r ig ina t ing  -0.9 eV i n  

t h e  valence s t a t e s .  We can thus  conclude t h a t  at a f i n a l  s t a t e  energy 

of 9*5 eV t h e r e  is a change i n  t h e  AgBr EDCs. As  can be seen at 

higher  photon energ ies  i n  Fig. 6.1, all t h e  s t r u c t u r e  a t  energies,  E , 
higher  than  t h i s  is weak and tenpera ture  inva r i an t .  I n  a similar manner 

f o r  the  A g C l  d a t a  displayed i n  Fig. 5.g9 s t rong  s t r u c t u r e  o r ig ina t ing  

-0.7 eV i n  the  f i l l e d  s t a t e s  becomes weak between hV = 10.3 and 

11.0 eV. Further,  a l l  the  AgCl s t r u c t u r e  above E = 10.2 e V  (see 

Fig. 6 * 3 )  i s  independent of  temperature and weak no matter  what i t s  

cha rac t e r  or behavior was at lower f i n a l  s t a t e  energ ies .  We have thus  

far i n  t h e  t h e s i s  only discussed t h e  EDC data i n  the  low E region,  It 
is the  purpose of  t h i s  s ec t ion  to examine t h e  causes f o r  t h i s  weakening 

e f f e c t  on the  m>Cs.  

The most reasonable explanat ion which comes to mind for t he  presence 

of two f i n a l  s t a t e  energy regions over which the  charac te r  of t h e  s t ruc -  

t u r e  and its temperature dependence a r e  d i f f e r e n t ,  i s  t h a t  it i s  a fea-  

t u r e  of t he  o p t i c a l  e x c i t a t i o n  process,  It was pointed out i n  s ec t ion  A 

t h a t  t h e  high energy f i n a l  s t a t e s  i n  the  s i l v e r  ha l ides  a re  derived from 

Ag 5p o r b i t a l s  mixing with lower energy haLogen d s t a t e s ,  The hybrid- 

i zed  d s t a t e s  probably produced the  temperature dependent f i n a l  dens i ty  

of s t a t e s  s t r u c t u r e  at 3,6 eV i n  AgBr and 8,1 eV i n  AgCl The 

conduction s t a t e s  above these  energies  would then  be mair,ly p - l ike  i n  

cha rac t e r .  F’urthermore, i n  Chapter V we determined t h a t  the  f i l l e d  

s t a t e s  were der ived from halogen p o r b i t a l s  to a depth o f  about 3.3 e V  

i n  AgBr and 3.0 eV i n  A g C l  (see Chapter V I ) .  Recal l ing t h a t  dipole  



t r a n s i t i o n s  between two p o r b i t a l s  a r e  forbidden by  symmetry, it i s  

c l e a r  t h a t  o p t i c a l  t r a n s i t i o n s  between these  two regions of p-derived 

states are only poss ib l e  between those  p a r t s  of one set of hybridized 

states which have d cha rac t e r  and the  predominant p symmetry p a r t s  

of t h e  o the r  s e t  of states.  Since t h e  hybridized states' d charac te r  

r ep resen t s  only a small f r a c t i o n  of t h e  t o t a l  j o i n t  dens i ty  o f  states 

i n  t h i s  t r a n s i t i o n  energy range, such a mechanism would seem to expla in  

t h e  weakness and r e l a t i v e ,  temperature insens it i v i t y  of t he  valence 

p-derived EDC s t r u c t u r e  a t  high photon ene rg ie s+  

t ions ,  it would be concluded t h a t  t h e  conduction states are p r imar i ly  

of Ag 5p o r i g i n  and symmetry above 9.5 e V  i n  AgBr and 10.2 e V  i n  

A g C l  

ments. Since t h e  f i n a l  states below these  energ ies  of 9.5 and 10.2 e V  

(AgBr and AgCl , r e spec t ive ly )  a r e  thought t o  be of s and d 

charac te r ,  one would expect considerably more allowed o p t i c a l  t r a n s i -  

t i o n s  from t h e  same hybridized p valence states and the re fo re  the  

s t ronge r  EDC structure which is seen. 

From these  considera- 

up t o  a t  l eas t  11.8 eV, t h e  l i m i t  of t h e  u l t r ah igh  vacuum measure- 

From t h e  windowless AgBr experiments discussed i n  the  l as t  

chapter,  t h e r e  i s  add i t iona l  d a t a  available which both  supports  and 

c a s t s  doubt on such conduction s ta te  assignments. When the  -5.0 eV d 

e l e c t r o n s  a r e  exc i t ed  t o  a f i n a l  s t a t e  energy of 1la3 eV i n  t h e  

ht, = 16.8 eV EDC of Fig.  6.10(a), t h e  peak is q u i t e  s t rong  compared t o  

t h e  s t r u c t u r e  due t o  e x c i t a t i o n s  from t h e  p-derived s ta tes  t o  t h i s  same 

f i n a l  s t a t e  energy i n  Fig.. 6.1. 
t h e  t r a n s i t i o n s  be ing  t o  Ag 5p-derived states a t  E = 11.8 e V  . On 

t h e  o the r  hand, a t  lower 'photon energ ies  when t h e  -3.7 and -5.0 e V  

d-derived s t r u c t u r e s  a r e  exc i t ed  t o  t h e  E = 9.5 e V  energy where these  

Ag 5p s t a t e s  should begin, bo th  peaks lose .  s t r eng th  i n  t h e  same manner 

as t h e  p-derived s t r u c t u r e  d i d  ( see  Figs .  6 # 3  and 6.9), 
could not happen i f  we were s iRply dea l ing  with d 4 p  t r a n s i t i o n s .  

This c a s t s  some doubt on t h e  Ag 5;p assignment. However, t h i s  data 

does show some cont rad ic t ions ,  as poin ted  out above, and e x h i b i t s  o the r  

anomalies when €$ 

These s t r eng ths  a r e  cons i s t en t  with 

This, of course, 

was used as t h e  l i g h t  source a t  high photon energ ies ,  



Thus, w e  will specula te  t h a t  t h e  two f i n a l  s t a t e  regions over which t h e  

u l t r a h i g h  vacuum EDC behavior  is c l e a r l y  d i f f e r e n t  is due t o  t h e  occur- 

rence of A g  5p-derived s t a t e s  a t  energ ies  above 9.5 eV i n  AgBr and 

10.2 eV i n  A g C l  though o t h e r  e f f e c t s  on t h e  0 ,p t ica l  e x c i t a t i o n  process  

may be t h e  cause.  



VLIIe THE ELECTRONIC STATES AND OPTICAL EXCITATION PROCESS I N  

AgBr AND A g C l  DETERMINED FROM THESE STUDIES 

We have d iscussed  i n  g r e a t  d e t a i l  many d i f f e r e n t  features of t h e  

photoemission d a t a  and i n  each case used these  to determine t h e  nature  

of t h e  e l e c t r o n i c  s t a t e s  involved i n  t h e  o p t i c a l  t ransi t ions. .  It is the  

purpose of t h i s  chcxpter t o  summarize a l l  of t h i s  information i n  a con- 

c i s e  form so one can e a s i l y  use t h e  resu l t s  of t hese  s t u d i e s  and a l s o  

g a i n  a pe r spec t ive  on t h e  f e a t u r e s  which a r e  c h a r a c t e r i s t i c  of the  

s i l v e r  ha l ide  e l e c t r o n i c  s t r u c t u r e .  They a r e  coppared to es t imates  of 

t h e  band s t r u c t u r e  i n  s e c t i o n  B; i n  s e c t i o n  D they  are coppared to t h e  

c q r o u s  ha l ide  room temperature c h a r a c t e r i s t i c s  determined by  

Krolikowskil  to study t h e  e f f e c t  of changing t h e  noble metal  cons t i -  

t uen t .  The importance of conserving c r y s t a l  momentum, k , i n  t he  

o p t i c a l  t r a n s i t i o n s  i s  examined i n  s e c t i o n  C s ince  some questiori e x i s t s  

as t o  t h e  na ture  of t h e  e x c i t a t i o n  process  i n  t h e  s i l v e r  ha l ides  as 

wel l  as t h e  cu,prous h a l i d e s  These s o l i d s  a r e  p a r t i c u l a r l y  i n t e r e s t i n g  

i n  t h i s  regard s ince  they  a r e  intermediate  between c l a s s i c  wide band gap, 

t i g h t l y  bound insu la tors ,  where t r a n s  it ions may be predominantly non- 

d i r e c t ,  and narrow gRp, covalent  semiconductors i n  which t r a n s  it ions a r e  
113 d i r e c t .  

A e  The E lec t ron ic  S t a t e s  of AgBr and A g C l  

A l a r g e  amount of photoemission data has been presented i n  the  

previous chapters .  It was divided according to t h e  c h a r a c t e r i s t i c s  of 

t h e  e l e c t r o n i c  s t a t e s  which could be  determined from a p a r t i c u l a r  p a r t  

of  t h e  data. I n  t h i s  manner a l l  of t he  EDC data f o r  AgCl and AgBr 

has  been depic ted  except near threshold.  

i n  Appendix D f o r  completeness and f u t u r e  re ference .  

sen ted  i n  t h e  main tex t  s ince  it does not conta in  any c h a r a c t e r i s t i c s  

which have not a l ready  been examined and can be used much more e f f i -  

c i e n t l y  as s t r u c t u r e  p l o t  d a t a  t o  b e  presented below. 

The omitted d a t a  is  presented 

It is not pre-  

The major 



c h a r a c t e r i s t i c s  of t h e  EDC d a t a  discussed i n  the  l as t  t h r e e  chqpters  a re  

summarized along with t h e  suggested i n t e r p r e t a t i o n s  i n  Table V I I I . 1 ,  

TABLE VIII.1. S m a r y  of AgBr  and A g C 1  photoemission 
EDC c h a r a c t e r i s t i c s  

SUGGESTED 
FINAL STATE ENERGY'+ (ev) EDC STRUCTURE 

INTERPRETATION 
A g C l  

9.5 

3.3 

< 10.2 

Hybridized halogen 

Sharpen 
Strong 

No sharpening Pure Ag 4d-derived 
of lowest peak valence states 

> 10.2 
Forb idden halogen 

t r a n s i t  ions? 
Weak No sharpening :p 4 Ag 5p 

Enhanced Hybridized halogen 
s t r eng th  ; d-der ived 
Some new conduction states 
s t rue  t u r e  

3.1 

#- 
0 = E. 

V 

The table is divided according t o  t h e  f i n a l  s ta te  energy of t h e  e lec-  

t r o n s  t o  attempt t o  separate t h e  EDC e f f e c t s  c h a r a c t e r i s t i c  of t h e  con- 

duc t ion  s t a t e s  from those  of t h e  valenqe s t a t e s .  The c h a r a c t e r i s t i c s  of 

t h e  f i l l e d  s t a t e s  were a l l  determined at low f i n a l  s ta te  energ ies  as 

shown by  t h e  f i r s t  l i n e  of t h i s  t a b l e .  

I n  order  t o  determine t h e  d e t a i l e d  o r i g i n  of t h i s  s t r u c t u r e  i n  t h e  

e l e c t r o n  s t a t e s ,  it i s  very u s e f u l  t o  summarize t h e  EDC information by 

p l o t t i n g  t h e  f i n a l  s t a t e  energy of each peak and shoulder as a func t ion  

of photon energy. (This method was f i r s t  used ex tens ive ly  by Eden.") 

This i s  done f o r  AgBr  a t  room and l i q u i d  n i t rogen  temperature i n  
Fig.  3*la We have a l s o  included, t h e  ec t r apo la t ions  of t h e  EDC's 

l ead ing  and t r a i l i n g  edges t o  t h e  base l i n e  i n  these  " s t ruc tu re  p l o t s " .  



A TRAILING EDGE 

FIGURE 8. l (a ) .  S p e c t r a l  d i s t r i b u t i o n  of t h e  AgBr EDCs' s t r u c t u r e  
and edges at ZgSS°K. Unit and zero slope l ines ,  with 
t h e i r  e l e c t r o n  energy-axis in te rcepts ,  are shown f i t  
t o  xppropriate  da ta .  



FIGURE !?)*I-(b)* S p e c t r a l  d i s t r i b u t i o n  of t h e  AgBr EDC' structure 
and edges at 30°K. 
t h e i r  e l e c t r o n  energy-axis  i n t e r c e p t s ,  a r e  shown fit 
t o  zppropria-te d a t a .  

Unit  and ze ro  s lope  l i n e s ,  with 



It should be noted t h a t  very v i t a l  information on t h e  s t r eng th  and 

width v a r i a t i o n s  of t h e  EDC s t r u c t u r e  has been discarded i n  forming 

such a p l o t .  However, t h e  sys temat ics  of  t h e  v a r i a t i o n  of t he  s t ruc -  

t u r e  wi th  v a r i a t i o n  of t h e  photon energy can be e a s i l y  determined by  

t h i s  method of data presenta t ion .  This is very  important s ince  t r a n s i -  

t i o n s  from regions  of high d e n s i t y  of s t a t e s  i n  the  valence band pro- 

duce s t r u c t u r e  i n  t h e  EDCs which changes pos i t i on  wi th  increments of 

energy equal  t o  t h e  changes i n  photon energy. Such s t r u c t u r e  should 

thus  be descr ibed by a l i n e  of u n i t  s lope on t h e  s t r u c t u r e  p l o t ;  t h e  

energy of the  high dens i ty  o f  states reg ion  is  given by t h e  e l e c t r o n  

energy-axis i n t e rcep t  of such a l i n e .  A s  can be seen by Fig. 3.1, at  

both 293 and 80 K, regions of high dens i ty  of states are predic ted  by  

t h i s  method t o  be 0.3, 2.9, and 3.7 e V  below t h e  AgBr valence band 

maximum.  From Table VIII.l where t h e  temperature dependences of t h e  

widths of t h i s  s t r u c t u r e  are summarized i n  t h e  f irst  l i ne ,  we conclude 

t h a t  t h e  -0.8 and -2.9 e V  peaks are B r  4p-derived hybridized valerice 

states while t h e  -3.7 eV s t r u c t u r e  i s  der ived from t h e  loca l i zed  Ag 

valence s ta tes  wi th  almost pure 4d symmetry. 

0 

It should b e  emphasized a t  t h i s  point  t h a t  t hese  u n i t  s lope l i n e s  

and t h i s  i n t e r p r e t a t i o n  f o r  t he  Ag 4d s t a t e  o r i g i n  were used i n  

s e t t i n g  t h e  energy s c a l e s  f o r  a l l  t he  EDC data. The highest  point of 

t h e  l ead ing  edge ex t r apo la t ion  should correspond t o  e x c i t a t i o n  from t h e  

h ighes t  f i l l e d  s t a t e .  

less than  0,l e V  e r r o r  of t h i s  process was discussed i n  Chapter IV, 
p a r t  D e )  Thus if  t h e  valence band maximum, Ev , is taken t o  be t h e  

zero of energy, t h e  f i n a l  s t a t e  energy of  e l ec t rons  photoexcited from 

t h e s e  states would j u s t  be equal  t o  t h e  photon energy, hV . Thus, we 

can s e t  t h e  energy a x i s  by f i t t i n g  a u n i t  s lope l i n e  corresponding t o  

E = hv t o  t h e  h ighes t  l ead ing  edge poin ts  as was done i n  Fig. 3ele 
There may be some ques t ion  as t o  t h e  temperature dependence of  t h i s  

energy s c a l e  s ince  we have determined t h a t  t h e  energy of t he  highest  

f i l l e d  s t a t e s  w i l l  be  broadened wi th  temperature v a r i a t i o n  (see Table 

V . 1 ) .  Fortunately,  t h e r e  i s  a somewhat independent check on t h e  energy 

s c a l e e  Since we determined i n  Chapter V I  t h a t  t h e  "pure" Ag 4d states 

(The method of ex t r apo la t ing  t h e  data and t h e  



should not be dependent i n  any way on temperature, t he  absolu te  energy 
which we determine from t h e  EDCs f o r  t hese  s t a t e s  r e l a t i v e  t o  t h e  

valence band m a x i m u m  should be temperature independent. As can be seen 

by comparison of par ts  (a )  and (b) of t he  f igure ,  if t h e  

is loca ted  at t h e  highest  l ead ing  edge points,  t h e  energy determined f o r  

t h e  temperature independent EDC s t r u c t u r e  is t h e  siune -3.7 e V  value at 

2% and 30°K. 
important s ince  as can be seen, t h e  lead ing  edge does devia te  from t h e  

E = hV 

E = hv l i n e  

This temperature independence of  t h e  energy scale is  

0 l i n e  a b i t  more at 30 K t han  at room temperature. 

Regions of high conduction band dens i ty  of s ta tes  s t r u c t u r e  can 

a l s o  be determined from t h e  s t r u c t u r e  p l o t s ,  Trans i t ions  t o  such high 

dens i ty  of s ta tes  regions produce EDC s t r u c t u r e  which is  independent of 

t h e  photon energy. Therefore, such s t r u c t u r e  is descr ibed by  a l i n e  of 

zero  s lope  whose E - a x i s  i n t e rcep t  is the  o r i g i n  of  t he  f i n a l  dens i ty  of  

s t a t e s  region.  It is  q u i t e  i n t e r e s t i n g  t o  note t h a t  no EDC s t r u c t u r e  is 

c h a r a c t e r i s t i c  of a high dens i ty  of  conduction s t a t e s  a t  room tempera- 

t u r e  [see p a r t  ( a ) ]  but at 30°K [ p a r t  (b ) ]  t h e r e  i s  c l e a r l y  a peak which 

has a f i x e d  f i n a l  state energy of 3.3 eV.  

t ion of  t h e  temperature dependent 

dens i ty  examined i n  d e t a i l  i n  t h e  las t  chapter .  Note t h a t  t h e  s t r u c t u r e  

which o r i g i n a t e s  -0,s eV i n  t h e  valence band does not appear t o  be in- 

f luenced by t h i s  f i n a l  s t a t e  region.  It would thus  appear t h a t  t hese  

conduction s ta tes  only occur over a r e s t r i c t e d  por t ion  of  t he  B r i l l o u i n  

zone, and the  e x c i t a t i o n s  from valence s ta tes  above about -3.0 eV 

( i e e e j  lle3 - sI?3 ev)  conserve c r y s t a l  momentum. The o p t i c a l  e x c i t a t i o n  

process  w i l l  be examined i n  d e t a i l  i n  s e c t i o n  C .  There is  some evidence 

f o r  a 9.3 e V  conduction band peak a t  9OoK as can be seen f o r  t h e  -0.9 e V  

s t r u c t u r e  as it moves t o  t h i s  f i n a l  s ta te  energy and t h e  behavior of a 

few shoulders  o r i g i n a t i n g  deeper i n  the  valence states [see p a r t  (b)]  e 

However, it should be  noted t h a t  t h e  peaks a r e  a l s o  diminishing i n  

s t r eng th  eventua l ly  becoming a shoulder a t  hV = 10.5 eV . Therefore, 

t h i s  change i n  movement of t h e  -0.3 eV s t r u c t u r e  wi th  hV v a r i a t i o n  is  

be l ieved  due t o  the  inf luence of  t h e  change i n  EDC stru-cture cha rac t e r  

beginning around 9.5 eV as was poin ted  out  in t h e  l as t  chapter  ( see  a l s o  

Table V I I I . 1 )  

This i s  a graphic demoastra- 

E r  4d-derived conduct ion s t a t e  



It is  important t o  r e a l i z e  t h a t  we have not made any assumptions 

about t h e  o p t i c a l  e x c i t a t i o n  process  i n  l o c a t i n g  these  high dens i ty  of 

state regions.  If k conservat ion is not an important s e l e c t i o n  ru le ,  

t hen  t h e  s t r u c t u r e  corresponding t o  these  d e n s i t y  of  s t a t e s  regions w i l l  

behave i n  t h e  manner descr ibed above due t o  conservat ion of energy. 

k is conserved, t hen  t h i s  behavior  can occur Tor t r a n s i t i o n s  between 

t h e  high dens i ty  of  states reg ion  and a sharp ly  changing band i n  t h e  

same reg ion  of t h e  B r i l l o u i n  zone. Thus, t h e  assignments made for EDC 

s t r u c t u r e  which fol lows e i t h e r  a u n i t  o r  zero  s lope l i n e  on t h e  s t ruc -  

ture  p l o t  are independent of t h e  nature  of  t h e  o p t i c a l  e x c i t a t i o n  

process .  

If 

The zero s lope  l i n e  which f i t s  t h e  p o s i t i o n  of t h e  t r a i l i n g  edge 

ex t r apo la t ion  i s  a good measure of t he  vacuum l e v e l .  It is  i n t e r e s t i n g  

t o  note t h a t  t h e  AgBr photoemission threshold  is  reduced by 0.1 eV 

upon cool ing to 8OoK. This was a l s o  observed i n  the  AgBr y i e l d  

presented  i n  Chapter V ( see  Fig.  5.7) .  
A l l  of t h e  AgBr e l e c t r o n i c  s t r u c t u r e  information is summarized 

i n  Table VIII.2. The energ ies  were determined as discussed above from 

TABLZ VIII.2 Summary of information determlned f o r  t h e  
e l e c t r o n i c  s t a t e s  of AgBr . 

9.5 
8.8 
7.15 
0 - 0.35 

- 2.9  

- 3.3 
- 3.7 
- 5*0  
- 6,0 

~ 

O R I G I N  DEGREE OF MIXIN$ 

Ag (5P) ? H 

Br (4d) H 

B r  (4P) H 

B r  ( 4 ~ )  H 

Ag (4d) P 

Ag (4d) H 

Vacuum Level 
Valence Band Maximum 

Bottom of B r  (kp) Band 

Bottom of Valence Band 

“ H  = Hybridized, P = Fure 

193 



t h e  s t r u c t u r e  p l o t s  of many s e t s  of data. 

of not only t h e  data but t h e  energ ies  determined from it, t h e  s t r u c t u r e  

p l o t  f o r  another  AgBr 

To show t h e  r ep roduc ib i l i t y  

sample at room teqpera ture  i s  shown i n  Fig. 9.2. 

I- 

FIGURE 9.2 d S p e c t r a l  d i s t r i b u t i o n  of t h e  AgBr EDCS' s t r u c t u r e  
and edges at 29J°K. Unit and zero s lope  l i nes ,  wi th  
t h e i r  e l e c t r o n  energy-axis i n t e rcep t s ,  a r e  shown f i t  
t o  appropr ia te  da ta .  



Noting t h e  high r e p r o d u c i b i l i t y  of t h e  d a t a  and t h e  e r r o r s  discussed 

i n  Chapter I V Y  it is be l ieved  t h a t  these  energ ies  are known t o  k 0.1 eV. 

The atomic o r i g i n  of t h e  var ious dens i ty  of s ta tes  s t r u c t u r e  is indi-  

c a t e d  i n  t h e  table along wi th  t h e  ex ten t  of  t h e  wavefunction mixing 

a s soc ia t ed  with t h e  states. 

t h e  s t r u c t u r e  was determined i n  t h e  l as t  t h r e e  chapters .  

This information on t h e  d e t a i l e d  o r i g i n  of 

The EDCs of AgCl can a l s o  be analyzed us ing  s t r u c t u r e  p l o t s  t o  

observe t h e  systematic  v a r i a t i o n  of t h e i r  s t r u c t u r e  with changing photon 

energy. 

of h igh  dens i ty  of  states can be loca ted  a t  -0.7, -2.6, and -3.3 eV i n  

t h e  A g C l  valence band. It i s  important t o  note t h a t  t he  temperature 

independent s t r u c t u r e  o r i g i n a t i n g  a t  -3.3 eV remains constant  i n  energy 

even though t h e  l ead ing  EDC edge departs s i g n i f i c a n t l y  from t h e  E = hV 

l i n e  a t  80 K for low photon energ ies .  The f i n a l  dens i ty  of s t a t e s  

reg ion  a t  3el eV, which was discussed ex tens ive ly  i n  t h e  l as t  chapter, 

is c l e a r l y  evident  on these  p lo t s .  It is i n t e r e s t i n g  t h a t  it a f f e c t s  

t h e  AgCl EDCs a t  bo th  room and l i q u i d  n i t rogen  temperatures i n  con- 

t ras t  t o  t h e  

Fig.  9.1) e 

A g C l  The r e p r o d u c i b i l i t y  of t h i s  data and t h e  energy loca t ions  i s  

shown by  t h e  s t r u c t u r e  p l o t  of  Fig.  9.4 f o r  another  sample a t  Z B ° K .  

These AgCl energ ies  can be summarized i n  Table V I I I . 3 .  A s  i n  t he  case 

Such p l o t s  a r e  shown a t  295 and 80°K i n  Fig. 3.3. Regions 

0 

AgBr 8.8 eV s t r u c t u r e  which i s  only seen a t  80°K (see 

The vacuum l e v e l  is constant  with temperature a t  7.6 eV i n  

TABLE V I I I . 3  Sunniary of information determined f o r  
t h e  e l e c t r o n i c  s t a t e s  o f  AgCl . 

> 10,2 

8*1 
7 e55 
0 - 0,8 

- 2,65 

- 3.0 

- 343 

O R I G I N  DEGREE OF MIX IN^' 

Ag ( 5 P )  ? H 

c1 (3d) H 

c1 (3P) H 

c1 (3P) H 

Ag (4d) P 

Vacuum Level 
Valence Band M a x i m u m  

Bottom of C 1  (3p)  Band 

46 
H = Hybridized, P = Fure 

1% 



FIGUFZ 9.3(a). S p e c t r a l  d i s t r i b u t i o n  of  t h e  A g C l  EDCs' 
s t r u c t u r e  and edges a t  2 s 0 K e  
zero  s lope l i n e s ,  wi th  t h e i r  e l e c t r o n  
energy-axis in te rcepts ,  are shown fit to 
qppo-priate  data. 

Unit  and 
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I 

8.0 

Q 
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FIGURE: 8.3(b) S p e c t r a l  d i s t r i b u t i o n  of t h e  A g C l  EDCS' 
s t r u c t u r e  and edges a t  8O'K. 
ze ro  s lope lines, with  t h e i r  e l e c t r o n  
energy-axis interce:pts, a r e  shown f i t  to 
appropr ia te  da ta .  

Unit  and 



FIGURE 9.4, S p e c t r a l  d i s t r i b u t i o n  of t he  AgCl EDCS' 
s t r u c t u r e  and edges a t  295OK. Unit and 
zero  s lope l i nes ,  with t h e i r  e l e c t r o n  
energy-axis in te rcepts ,  are shown f i t  to 
appr o,pr i a t  e da t  a 



of AgBr , we have included t h e  atomic o r i g i n  and degree of mixing of 

t he  states corres:ponding t o  these  energ ies  as determined i n  t h e  l as t  

t h r e e  ch8pters  e 

Be Comparison t o  Energy Band S t ruc tu res  

It is  h e l p f u l  i n  eva lua t ing  bo th  t h e  v a l i d i t y  of these  assignments 

and t h e  c a l c u l a t i o n s  of t h e  energy bands t o  compare t h e  r e s u l t s  sum- 

marized i n  s e c t i o n  A t o  t h e  band s t r u c t u r e s  which a re  repor ted  i n  t h e  

l i t e r a t u r e ,  A s  po in ted  out i n  Chapter 111, t h e  APW ca l cu la t ions  of 

Xcop do not y i e l d  any reasonable agreement i n  energy wi th  our f ind ings  

and w i l l  thus  not be discussed here .  

band s t r u c t u r e s  of Bassani, Knox, and Fowler3 ( h e r e a f t e r  r e f e r r e d  t o  as 

BKF) agree suypr i s ing ly  w e l l  wi th  our r e s u l t s  even though they  a r e  only 

based on ca l cu la t ions  of t h e  A g C l  valence band and measured s i l v e r  

ha l ide  o p t i c a l  p r o p e r t i e s .  Their  estimate f o r  t he  AgBr band s t r u c t u r e  

is reproduced i n  Fig. 3*5. 
t h e  Ag 5:p and 5s 
these  bands as an es t imate  o f  t he  l o c a t i o n  of t h e  Ag 3p-derived s t a t e s .  

The reg ions  of high dens i ty  of s ta tes  determined by these  photoemission 

s t u d i e s  (see Table VIII .2)  a r e  shown by t h e  shaded areas superimposed on 

t h e  bands. It should be  noted t h a t  t h e  atomic designat ions on t h e  r i g h t  

s i d e  of t he  f i g u r e  r e f e r  t o  t h e  o r b i t a l s  from which t h e  BKF s t a t e s  a t  

I' and t h e  bands emanating from t h i s  po in t  a r e  der ived.  Since they  a r e  

not i n t eypre t a t ions  of our data,  it is  s i g n i f i c a n t  t h a t  t he  o r i g i n  

determined from t h e  photoemission data c o r r e c t l y  corresponds to t hese  

l a k e l s  i n  every case .  The -3.7 eV region, which was r e l a t e d  t o  t h e  Ag 

states wi th  almost pure 4d symmetry, l i e s  p r e c i s e l y  where t h e  very 

6 

On t h e  o ther  hand, t h e  specula t ive  

The es t imate  of  S e i t z  f o r  t h e  separa t ion  of 

states i n  t h e  s i l v e r  halides,41 is  included with 

f l a t  Ag 4d bands have been p laced  by BKF. It should be r e c a l l e d  t h a t  

t hese  f l a t  bands a r e  composed of l o c a l i z e d  s t a t e s  which a re  not s i g n i -  

f i c  an t  l y  hybr i d  ized  log 

of hybridized Ag 4d s t a t e s  i n  t h e  bands as we found it should. The 

o ther  valence s t r u c t u r e  l i e s  i n  t h e  B r  kp-derived region of t h e  bands 

as we p red ic t ed .  One can see t h a t  t h e r e  i s  room here f o r  adjustment of 

t h e  c a l c u l a t i o n  to b e t t e r  f i t  our da t a .  

The -5e0  e V  s t r u c t u r e  occurs i n  a high dens i ty  

For example, t h e  highest  % 



FIGURE 3*5 .. The e l e c t r o n i c  band s t r u c t u r e  of  A g B r  as speculated by 
Bassani, Knox, and Fowler ( re ference  3) wi th  t h e  es t imate  for t h e  
Ag (5p) s t a t e s  by S e i t z  ( re ference  41 ) .  The atomic designat ions a r e  
t h e  o r b i t a l s  from which t h e  states a t  I' a re  der ived.  The vacuum 
l e v e l  ( - - - ) 7  poss ib l e  beginning of  t he  Ag(5p) s t a t e s  (- - -), and 
reg ions  of high dens i ty  of s t a t e s  (shaded) determined from these  
s t u d i e s  a r e  superimposed on t hese  bands. 
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band could be lowered i n t o  t h e  range of t h e  -0,3 e V  experimental  dens i ty  

of states region. The ca l cu la t ed  conduction states s u b s t a n t i a t e  t h e  

b a s i c  assignments made i n  t h e  last chapter .  The broken l i n e  shown a t  

9*5 e V  is t h e  experimental ly  determined s t a r t i n g  energy f o r  t h e  Ag 

5p-derived conduction s t a t e s  (see Table VI I I .2> ,  This i s  i n  accord 

wi th  t h e  gene ra l  computed l o c a t i o n s  f o r  t h e  Ag 5p  and B r  4d states. 

The 3e3  eV B r  

energy where many states merge a t  I? to ob ta in  t h e  proper  temperature 

dependence of  t h e  corresponding EDC s t r u c t u r e .  Not only a r e  t h e  BKF 

bands i n  t h i s  energy range c l e a r l y  Br 4d-derived i n  agreement with 

OUT predic t ions ,  but even t h e  

p r e t a t i o n s  of Chapter V I I .  I n  f a c t ,  t h i s  l o c a t i o n  i n  t h e  reg ion  of F 
is cons i s t en t  wi th  t h e  l a c k  of observed EDC e f f e c t s  for d i r e c t  t r a n s i -  

t i o n s  to t h i s  energy from -0.3 e V  valence s t a t e s  which a re  seen i n  

Fig.  3.5 to l i e  between t h e  cen te r  and boundaries of t h e  zone (e.g., 

4d-derived d e n s i t y  of states was predic ted  to be near t h e  

I” energy is cons i s t en t  with our i n t e r -  
23 

A and E). 
3 The data is compared t o  t h e  A g C l  e l e c t r o n i c  band s t r u c t u r e  of BKF 

i n  Fig.  3.6. The Ag 5p  s ta tes  a r e  aga in  loca ted  i n  t h e  energy bands 

us ing  t h e  estimate of S e i t z  f o r  t h e  Ag 5s to 5 p  separa t ion  i n  t he  

s i l v e r  ha l ides  e 

energy s t a t e s  above I-l by comparison of h i s  recent  A g C l  far  W 

o p t i c a l  s t u d i e s  to t h e  measurements of K C 1  

t h e  band s t r u c t u r e  a l s o .  The e f f e c t  of t hese  new es t imates  a r e  to lower 

t h e  C 1  3d-derived F’ l e v e l  a few t e n t h s  of an eV towards t h e  loca-  

t i o n  of our high dens i ty  of s t a t e s  a t  3.1 eV. 

loca t ed  s t r u c t u r e  would s t i l l  occur a t  L r a t h e r  than  a t  I’ , as it d id  

f o r  AgBr (Fig.  3,5). This non-negl igible  L s ta te  dens i ty  may be t h e  

d i f f e rence  which allows t h e  halogen d-derived s t a t e s  t o  be observed a t  

2B0K i n  A g C l  b u t  only a t  3O0K i n  AgBr (compare Fig.  3-3 to 3el)e 
Further,  t h e  experimental  l o c a t i o n  of t h e  beginning of t h e  Ag 5p- 

der ived  s t a t e s  a t  10.2 eV is cons i s t en t  w i th  t h e  t h e o r e t i c a l l y  es t imated 

s ta tes  i n  Fig. 3.6, 
with t h e  near ly  f l a t  Ag 4d s ta tes  is t o t a l l y  cons i s t en t  with our 

temperature independent EDC s t r u c t u r e  p red ic t ions  of Chapter V I .  The 

Carrera  has  es t imated t h e  loca t ions  of t he  t h r e e  F 4 1  

e 45 These a re  included i n  

25 
However, t he  experimentally 

The coincidence of t h e  -3.3 e V  dens i ty  of  s t a t e s  

2 01 



FIGURE 8,6. The e l e c t r o n i c  band s t r u c t u r e  o f  AgCl as speculated by 
Bassani, Knox, and Fowler ( re ference  3) with t h e  est imates  f o r  t he  
Ag (5p) s t a t e s  by S e i t z  ( r e fe rence  41) and t h e  conduction s t a t e s  
a t  r by Carrera  ( re ference  45) The atomic designat ions a r e  the  
o r b i t a l s  from which t h e  s t a t e s  a t  r are der ived,  The vacuum l e v e l  
( - - -  ) J  poss ib l e  beginning of t he  s t a t e s  (- - -), and 
reg ions  of high dens i ty  of s t a t e s  (shaded) determined from these  
s t u d i e s  a re  superimposed on these  bands e 

Ag ( 5 : ~ )  
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higher  hybridized C 1  3p-derived s t r u c t u r e  l i e s  i n  t h e  proper energy 

range as determined by BKF. These valence p s t a t e  r e s u l t s  provide a 

1 eV estimate f o r  t h e  e r r o r  of t he  ca l cu la t ed  highest  valence s t a t e .  

It should be noted t h a t  t h e r e  a r e  re la t ive  m a x i m a  such as t h i s  ca lcu la ted  

at o t h e r  p o i n t s  i n  t h e  B r i l l o u i n  zone (ice., 
probably a l s o  con t r ibu te  t o  a dens i ty  of s ta tes  a t  about -0.3 e V  i n  both 

AgCl and AgBr. 

4 

C4 by re ference  3)  which 

These comparisons serve t o  s u b s t a n t i a t e  t h e  e l e c t r o n i c  s t r u c t u r e  

r e s u l t s  determined by our s t u d i e s .  Since these  assignments were made 

on t h e  basis of  t h e  temperature dependence of t h e  EDCs as in teqpre ted  

us ing  t h e  dynamic hybr id i za t ion  model, t h i s  agreement i s  f u r t h e r  ev i -  

dence f o r  such a d e s c r i p t i o n  of  s i l v e r  ha l ide  photoemission. These 

resu l t s  can now be used as a basis f o r  more r e f ined  ca l cu la t ions  of t h e  

e l e c t r o n i c  band s t r u c t u r e  of t h e  s i l v e r  ha l ides .  

C .  The Opt ica l  Exc i t a t ion  Process 

We have a l ready  considered i n  Chqpter V I 1  one s e l e c t i o n  r u l e  f o r  t h e  

o p t i c a l  e x c i t a t i o n s  which is  of major importance t o  t h e  EDCs. It ,was 

found t h a t  s ince  t h e  halogen valence p-derived s t a t e s  and t h e  Ag 5:p- 

derived conduction s t a t e s  were of t h e  same pa r i ty ,  d ipole  t r a n s i t i o n s  

between them were forbidden by symmetry. The o the r  major s e l e c t i o n  r u l e  

of  importance i n  determining t h e  c h a r a c t e r i s t i c s  of t h e  EDCs is t h e  re- 

quirement of conserving c r y s t a l  momentum, k , i n  an o p t i c a l  t r a n s i t i o n .  

A s  was poin ted  out  c l e a r l y  by Shay and Spicer,  one of t he  necessary 

condi t ions  f o r  non-conservat ion of k ( i .e e , "nondirect" t r a n s  it ions) 

is t h a t  t h e  p o s i t i o n  of t h e  EDC s t r u c t u r e  e i t h e r  be independent of photon 

energy or change energy by increments equal  t o  t h e  hV v a r i a t i o n .  This 

i s  equiva len t  t o  r equ i r ing  t h e  EDC s t r u c t u r e  t.0 follow a u n i t  o r  zero 

s lope  l i n e  on a s t r u c t u r e  p l o t .  

Figs.  3.1 and 3e39  t h e r e  is one :piece of s t r u c t u r e  which moves through 

t h e  e n t i r e  s e t  of bo th  AgBr and A g C l  data with a locus which is 

considerably d i f f e r e n t  from e i t h e r  of t hese  t e s t  s lopes.  

conclude t h a t  k-conservation is important f o r  t r a n s i t  ions from t h e  hybrid- 

ized halogen p-derived s t a t e s  which correspond t o  t h i s  EDC s t r u c t u r e ;  

114 

A s  is q u i t e  c l e a r  from t h e  p l o t s  of 

One can r e a d i l y  



t h i s  i s  the  s t r u c t u r e  which was r e f e r r e d  t o  as "DIRECT" i n  Tables 5*2  

and 5 a 3 e  

condi t ion  so  w e  must examine two add i t iona l  p rope r t i e s ,  
The o the r  s t r u c t u r e  a l l  satisfies t h e  necessary nondirect  

If t h e  t r a n s i t i o n s  are non-k conserving, then  by conservation of 

energy one would expect t h e  EDC s t r u c t u r e  to f i r s t  become not iceable  

when t h e  photon energy was high enough to b r i n g  it above t h e  vacuum 
l e v e l .  I n  o the r  words, if t h e r e  were no pecu l i a r  s t r u c t u r e  or charac- 

t e r i s t i c s  of t h e  conduction states, then  s t r u c t u r e  should not suddenly 

appear i n  t h e  middle of t h e  EDC if only eneigy conservat ion is important. 

The -0.9 eV s t r u c t u r e s  i n  bo th  AgBr and A g C l  do "pop'' i n t o  the  EDC 

on t h e  lead ing  edge. This can be  seen i n  Fig.  5.1 f o r  AgBr where t h e  

onset  at 90°K is very  sharp between hY = 9.0 e V  and 9,2 eV. For A g C l ,  

t h e  structure is  not  as sharp; however, in Fig. 5.9 t h e r e  i s  c l e a r l y  

s t r u c t u r e  a t  90°K which is  f irst  observed between and 9-4 e V  

at t h e  lead ing  edge of t he  EDC. On t h e  basis of  t hese  observations,  we 

can conclude t h a t  o p t i c a l  e x c i t a t i o n  from -0.9 e V  i n  t h e  valence states 

of AgBr and A g C l  conserve c r y s t a l  momentum i n  the  t r a n s i t i o n .  

hV = 9.2 

The o ther  c r i t e r i o n  which can be  used i n  eva lua t ing  the  k-conserva- 

t i o n  s e l e c t i o n  ru le  is the  he ight  modulation of  t h e  EDC s t r u c t u r e .  One 

must b e  carefu l ,  however, s ince  t h e  he ights  can only be compared if t h e  

curves a r e  normalized to t h e  absorbed photon f l u x .  A s  was pointed out 
i n  Chapter 111, t h i s  can only be done a t  room temperature s ince  the  

o p t i c a l  p rope r t i e s  of t he  s i l v e r  h a l i d e s  have not been measured a t  low 

temperatures i n  t h i s  photon energy range. The room temperature EDCs of 

A g C l  

presented i n  F ig .  3.7. 
on t h e  11/66 c a l i b r a t i o n  of  t h e  

t h e  EDCs a r e  uniformly too high by about 30% ( see  Appendix C ) .  A s  can be  

seen by  c lose  s tudy of t h i s  data,  t h e  only he ight  modulation occurs a f t e r  

a l l  t h e  s t r u c t u r e  emerges above t h e  threshold,  and it is simply a continuous 

lo s s  of  s t r eng th  as t h e  s t r u c t u r e  goes to higher  f i n a l  s t a t e  energ ies .  

This i s  r e a l l y  not very valuable  s ince  such an e f f e c t  can just be ex- 

p l a ined  by  simple conservat ion of energy and assuming a conduction dens i ty  

of states with decreasing magnitude as t h e  energy increases .  

46 cor rec ted  f o r  sample r e f l e c t i v i t y  using t h e  d a t a  of White, a r e  

There curves were normalized with y i e l d  based 

C s  Sb F-7 standard by Koyama; therefore ,  3 

Physical ly  

2 04 



I I I I I I I I 

- 
I I I I I I I I I 
7.0 8.0 9.0 10.0 11.0 

ELECTRON ENERGY, E (eV)  

FIGURE 3.7( a) Comparison of energy d i s t r i b u t i o n s  normalized 
t o  absolute  quantum y i e l d  (per  absorbed photon) 
for e lec t rons  photoemitted from AgCl at Z 9 5 O K  
f o r  photon energ ies  of ?1,4 through 10.2 eV. 
This normalization is based on t h e  11/66 
c a l i b r a t i o n  of  t h e  C s  Sb s tandard F-T9 and 
t h e  curves a r e  thus  un?formly t o o  high by 29% 
a t  a11 photon energ ies  ( see  Appendix C )  a 



FIGURE 9*7(b) e Comparison of energy d i s t r i b u t i o n s  normalized 
to absolu te  quantum y i e l d  (pe r  absorbed photon) 
f o r  e l ec t rons  photoemitted from AgCl at Z B ° K  
f o r  photon energ ies  of 10.2 through 11.0 eV. 
The normalizat ion is based on t h e  11/66 
c a l i b r a t i o n  of t h e  Cs3Sb s tandard F-7, and 
t h e  curves a r e  thus  uniformly t o o  high by 298 
a t  a l l  photon energ ies  (see Appendix C )  e 
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FIGURE 3 .7 (c ) .  Comparison of energy d i s t r i b u t i o n s  normalized 
t o  absolu te  quantum y i e l d  (pe r  absorbed photon) 
f o r  e l ec t rons  photoemitted from AgCl a t  295'K 
f o r  photon energ ies  o f  11.0 through 11.6 eV. 
This normalization i s  based on t h e  11/66 
c a l i b r a t i o n  of t h e  C s  Sb s tandard F-7, and 
t h e  curves are thus  uniformly t o o  high by 29% 
a t  a l l  photon energ ies  ( see  Appendix C ) .  
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such an assumption is reasonable s ince  t h e  hybridized d conduction 

s ta tes  w i l l  have more p cha rac t e r  as t h e  energy approaches t h e  A g  

5p-derived s t a t e  range; therefore ,  t h e  t r a n s i t i o n s  from the  valence 

halogen p-derived s t a t e s  should become weaker at higher  f i n a l  state 

energ ies  e 

We consequently have no evidence for t he  remaining two pieces  of 

EDC s t r u c t u r e  of each ha l ide  t h a t  k need be conserved i n  t h e  o p t i c a l  

t r a n s i t i o n s .  It should be  noted t h a t  t h e  lower s t r u c t u r e  (-3.7 eV i n  
AgBr and -3.3 e V  i n  AgC1) corresponds to Ag states with almost pure 

4d symmetry. Thus, t h e  energy bands are very f l a t  and k is not a 

very  good indexing parameter for t hese  energy s t a t e s .  The quest ion of 

k-conservation is  r e a l l y  not  meaningful f o r  t r a n s i t i o n s  from such e l ec -  

t r o n i c  s t a t e s .  We the re fo re  conclude t h a t  f o r  t h e  fou r  predominant EDC 

features assoc ia ted  wi th  t h e  AgBr and A g C l  valence states:  

(1) t r a n s i t i o n s  from t h e  h ighes t  two sets of s t a t e s  appear t o  conserve 

c r y s t a l  momentum, (2)  t h e r e  is no reason t o  be l i eve  t h a t  k i s  o r  is 

not conserved i n  t r a n s i t i o n s  from -2.9 eV i n  AgBr and -2.6 e V  i n  AgC1, 

and (3) the  ques t ion  of whether conserving k i s  an irrfportant se lec-  

t i o n  rule  i s  not meaningful f o r  t h e  -3.7 e V  AgBr states o r  t h e  -3.3 eV 

A g C 1  s t a t e s ,  It is  iqpor tan t  to note t h a t  conclusion (1) is cons is ten t  

with t h e  observat ion made i n  s e c t i o n  A of t h e  e f f e c t  of t h e  !3e!3 e V  AgBr 

conduction s ta te  s t r u c t u r e  on t h e  "d i r ec t "  b u t  not t h e  -0.9 eV valence 

s t r u c t u r e  ( see  Fig.  9.1). 

D e  Comparison of S i l v e r  and Cuprous Bromide and Chloride 

Photoemission 

Because of  t h e  b a s i c  s i m i l a r i t i e s  between t h e  noble metal  hal ides ,  

t h i s  s tudy  and t h a t  by W. F. Krolikowski of t h e  cuprous halides' should 

r e in fo rce  each o the r  and l ead  t o  a b e t t e r  understanding of each. The 

resemblances i n  photoemission from t h e  s i l v e r  and cuprous ha l ides  a r e  

q u i t e  s t r i k i n g .  Comparing t h e  resu l t s  of t h i s  study, j u s t  summarized 

above, with t h e  room temperature data of Krolikowski,' it is seen t h a t  

t h e r e  is considerable  s t r u c t u r e  i n  t h e  EDCs of t h e  s i l v e r  ha l ides  which 

v a r i e s  i n  both magnitude and pos i t i on  with hY v a r i a t i o n  i n  t h e  same 
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manner as s t r u c t u r e  f o r  the  corresponding cuprous ha l ide .  

l a r i t i e s  between t h e  bromides a re  we l l  i l l u s t r a t e d  by the  highest  energy 

s t r u c t u r e  i n  t h e  1le3 eV EDCs shown i n  Fig.  !3e!3e 

Such s i m i -  

The leading  part  of 

ELECTRON ENERGY, E- CuBr (eV 1 
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FIGURE !3e8. Comparison of energy d i s t r i b u t i o n s  for e lec t rons  
photoemitted from AgBr (normalized t o  quantum 
y i e l d  p e r  absorbed photon) and CuBr (un-normalized) 
from the  work of Krolikowski ( re ference  1) at 2 B o K  
f o r  a photon energy of lle5 eV. Pa r t  of t he  CuBr 
curve is expanded by t h e  f a c t o r  shown. Note t h a t  the  
e l e c t r o n  energy s c a l e s  a re  d i f f e r e n t  f o r  t he  two curves. 



t h e  C u B r  EDC is expanded f o r  easier comparison. This s t r u c t u r e  reaches 

i t s  m a x i m u m  as a peak a t  a photon energy of about hV = 9m5 eV at  room 

temperature for bo th  AgBr (see  Fig.  5 .1 )  and C u B r  e The EDC s t ruc -  

ture, which shows common f e a t u r e s  f o r  t h e  two materials, l i n e s  up i n  

energy q u i t e  wel l  when t h e  E - a x i s  i s  l i n e a r l y  sca led ,  

s c a l i n g  is  to be expected when it is r e c a l l e d  t h a t  i n  add i t ion  t o  t h e  

d i f fe rence  of Ag and Cu , t h e s e  noble metals give r ise to d i f f e r e n t  

c r y s t a l  s t r u c t u r e s  for t h e  s i l v e r  (cubic-NaC1) and cuprous (cubic-ZnS) 

ha l ides .  This coincidence i n  sca l ed  energy of t h e  similar s t r u c t u r e  

a l s o  occurs f o r  t h e  ch lor ide  compounds as depic ted  a t  hV = 11.6 eV i n  

Fig. 3 * y 0  Again for C u C 1  t h e  l ead ing  p a r t  of t h e  curve is expanded 

f o r  easier comparison. It should b e  r e c a l l e d  t h a t  t h e  s t r u c t u r e  which 

we a s soc ia t e  with t h e  

l e f t  s i d e  of  t h e  s i l v e r  ha l ide  EDCs of F igs .  3.3 and !3.9e 
t h e  s t r u c t u r e  which Krolikowski a s soc ia t ed  with t h e  Cu 3d s t a t e s  of 

t h e  cuprous h a l i d e s  is the  very s t rong  peak on t h e  l e f t  s i d e  of t hese  

EDCs.  The c lose  c o r r e l a t i o n  of t hese  two peaks i n  t h e  f igu res  a& t h e  

o the r  s i m i l a r i t i e s  o f  EDC s t r u c t u r e  serves  to s u b s t a n t i a t e  t h e  d s t a t e  

l o c a t i o n s  i n  bo th  sets of ha l ides .  This coincidence i n  sca l ed  energy of 

t h e  noble metal d s t a t e  s t r u c t u r e  is q u i t e  s i g n i f i c a n t  not only because 

it l o c a t e s  these  states bu t  a l s o  because it supports t h e  assignment of 

t h e  h ighes t  f i l l e d  s t a t e s  to t h e  halogen p-derived o r b i t a l s .  The atomic 

o r i g i n  of t he  valence band m a x i m u m  has  been t h e  subjec t  of specula t ion  

i n  t h e  cuprous as wel l  as s i l v e r  h a l i d e s  for decades (see re ference  1 

f o r  a h i s t o r i c a l  d i scuss ion)  

The necess i ty  f o r  

Ag kd-derived statesis t h e  f a r t h e s t  peak on t h e  

I n  addi t ion,  

It is  important to note t h a t  for both  sets of ha l ides ,  t he  C u  3d 
EDC s t r u c t u r e  o r i g i n a t e s  deeper i n  t h e  valence s t a t e s  than  t h e  

s t r u c t u r e  does even though t h e  Cu 3d s t a t e s  l i e  h igher  i n  energy f o r  

t he  noble metals. This r e v e r s a l  i n  r e l a t i v e  p o s i t i o n  of t h e  two sets 

of  d - s t a t e s  would seem t o  imply t h a t  t h e  noble metal  d-halogen p 

mixing i s  s t ronge r  i n  t h e  cuprous h a l i d e s  than  it is i n  the  s i l v e r  s a l t s e  

One can thereby understand why only t h r e e  p i eces  of s t r u c t u r e  occur i n  

t h e  cuprous h a l i d e  EDCs presented i n  F igs .  ge!3 and 3,9 while four a r e  

observed f o r  t h e  s i l v e r  ha l ides  a t  t h e  same photon energies .  It should 

fg 4d 
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curve is  expanded by t h e  f a c t o r  shown. Note t h a t  t he  
e l e c t r o n  energy s c a l e s  a re  d i f f e r e n t  for t h e  two curvese 

Pa r t  of t h e  CuCl 
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be noted t h a t  t h i s  absence of s t r u c t u r e  occurs i n  t h e  reg ion  of t h e  
halogen p-derived s t a t e s  of  t h e  s i l v e r  ha l ides  and above t h e  energy of 

t h e  s t r u c t u r e  corresponding t o  t h e  

ha l ides .  It is thus  reasonable to hxpothesize t h a t  t h e  p states a r e  

so  h igh ly  hybridized and widely spread i n  energy t h a t  t h e  large peak on 

t h e  l e f t  side of t h e  cuprous h a l i d e  EDCs conta ins  not only Cu 3d- 

der ived  states but a l s o  hybridized halogen p-derived s t a t e s  e 

from t h i s  l a r g e  p-d mixing of t h e  cuprous ha l ide  valence s t a t e s  t h a t  

t h e  hybridized l e v e l s  should be  s i g n i f i c a n t l y  modulated by t h e  vibra- 

t i o n s  of the  l a t t i c e .  If t h e  l e f t  peak were der ived from Cu s t a t e s  

wi th  almost pure 3d symmetry, then, as we saw f o r  t h e  s i l v e r  salts  i n  

Chqpter VI ,  t h i s  EDC s t r u c t u r e  would be  independent of temperature, On 

t h e  o t h e r  hand, if  it a l s o  contained hybridized :p s t a t e s  as speculated 

above, then  t h i s  peak ' s  width would be temperature dependent, The 

temperature dependence of cuprous ha l ide  pnotoemiss ion would the re fo re  

be a most powerful t o o l  i n  t e s t i n g  t h i s  hypothesis.  

Cu 3d-derived s t a t e s  of t he  cuprous 

It follows 

It i s  i n t e r e s t i n g  t o  note t h a t  if t h e  s t r u c t u r e  which is  not seen 

i n  t h e  cuprous h a l i d e  d a t a  i s  neglected,  t h e  s t r u c t u r e  p l o t s  of t h e  

corres:ponding s i l v e r  and cu.prous h a l i d e s  a r e  e s s e n t i a l l y  i d e n t i c a l  i n  

character..  Such a comparison l e a d s  t o  an inpor tan t  observation. The 

motion of t h e  c e n t r a l  cuprous ha l ide  s t r u c t u r e  wi th  hv v a r i a t i o n  i s  

such t h a t  it zppears very much l i k e  t h e  superpos i t ion  of t h e  lower two 

hybridized p-der ived s t r u c t u r e s  i n  the  s i l v e r  ha l ides .  Therefore, one 

might conclude t h a t  t h e  p-d  mixing is  less  i n  t h e  cuprous ha l ides  

lead ing  t o  a narrower p-derived band. A s  should be  evident,  a complete 

comparison of t h e  temperature dependent cuprous ha l ide  photoemission t o  

s i l v e r  ha l ide  photoerniss ion would b e  extremely informative i n  i n t e r -  

p r e t i n g  t h e  structure p l o t s .  One t h i n g  t h a t  can be  concluded from 

comparing just  t h e  room tem-perature p l o t s  which a r e  ava i l ab le  is t h a t  

t h e r e  is a s i g n i f i c a n t  amount of cvprous h a l i d e  EDC s t r u c t u r e  which is 

c h a r a c t e r i s t i c  of k-conserving o p t i c a l  t r a n s  it ions I n  :par t icular ,  t h e r e  

i s  some s t r u c t u r e  which, l i k e  the  -0.8 eV s i l v e r  ha l ide  s t ruc tu re ,  emerges 

on t h e  lead ing  s i d e  of  t h e  EDCs. 

resemblances of t hese  noble ha l ide  EDCs t h a t  Krolikowski's bas i c  nondirect 

It is reasonable t o  conclude from t h e  
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a s s m p t i o n  f o r  - a l l  o p t i c a l  t r a n s i t i o n s  i n  t h e  cu.prous ha l ides  is probably 

inco r rec t .  Cooling t h e  cuprous h a l i d e s  should even accentuate  these  

d i r e c t  t r a n s i t i o n  e f f e c t s  more. 

s t r u c t u r e  which Krolikowski pos tu l a t ed  t o  exp la in  these  e f f e c t s  a re  

probably art if i c i a l  and not r ep resen ta t ive  of t h e  bulk p r o p e r t i e s  of t h e  

cuprous ha l ides .  

Much of t h e  conduction dens i ty  of s t a t e s  



1x0 THE ELECTRONIC STATES OF AgI 

The e l e c t r o n i c  s t a t e s  of AgBr and AgCl have been t h e  only 

s i l v e r  h a l i d e s  discussed ex tens ive ly  thus  far .  As  pointed out i n  

Chapter I, 
structure and t h e  considerably l e s s e r  amount of knowledge of  i t s  prop- 

e r t i e s .  Because of t h i s  l a c k  of informatiori, one of  t h e  prime methods 

of  anlayzing t h e  AgI r e s u l t s  w i l l  be t o  compare i t s  photoemissive 

p r o p e r t i e s  and t h e i r  temperature dependences t o  those of t h e  o the r  

h a l i d e s  which have been in t e rp re t ed  above. 

t he  f irst  d e f i n i t i v e  es t imate  f o r  t he  composition of t h e  AgI e lec-  

t r o n i c  s ta tes  (. 

AgI is examined sepa ra t e ly  because of i t s  d i f f e r i n g  c r y s t a l  

This w i l l  l e ad  t o  perhaps 

A. Experimental 

1 S m p l e  Character  is t i c  s 

Most of t h e  d e t a i l s  concerning t h e  prepara t ion  of AgI samples 

were included i n  t h e  d iscuss ion  of Chapter IV. The evaporat ion condi- 

t i o n s  f o r  each o f  t h e  samples s tud ied  a r e  included i n  Table IV.l. One 

of t h e  important cons idera t ions  which was not discussed f u l l y  was t h e  

c r y s t a l l i n e  modif icat ion of t h e  t h i n  f i l m s  s tud ied .  A g I  has t h r e e  

phases a t  normal pressure .  'I5 The s t a b l e  phase below about l l F ) O C  is 

cubic (ZnS) and it i s  r e f e r r e d  t o  as t h e  y phase. Between 115' and 

1 2 6 ' ~  AgI is  s t a b l e  i n  an hexagonal (wur t z i t e )  s t r u c t u r e  which is 

i d e n t i f i e d  as the  B phase, Above t h i s  temperature a very complex 

a phase exists which is r e f e r r e d  t o  as t h e  A g I  l a t t i c e .  O f  these,  

The only t h e  y and B modif icat ions e x i s t  a t  room temperature. 

room temTerature phase of t h e  films used f o r  t h e s e  s tud ie s  was deter-  

mined by  X-ray d i f f r a c t i o n  of t h i c k  samples (= O , 3  pn) which were 

removed from t h e  experimental  chamber for analys is .  The p r i n c i p l e  d i f -  

f r a c t i o n  peaks l i e  at almost t he  same angle for both  t h e  y and B 
phases; therefore ,  one must analyze higher  o rde r  d i r ec t ions .  The X-ray 

resu l t s  f o r  two films are shown i n  F iga  9e1 where the  i n t e n s i t y  is p lo t t ed  

116 
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as a func t ion  of t h e  d i f f r a c t i o n  angle.  As can be seen the re  is no 

Agf  EVAP. 

I 
GO0 

2 

0 

I 

FIGURE 9.1. The angular d i s t r i b u t i o n  of t h e  d i f f r a c t i o n  of  X-rays 
by two AgI samples. S t ruc tu re  is  predic ted  f o r  t h e  
@ and y phases of AgI a t  t h e  pos i t i ons  indicated 
by t h e  arrows. 

evidence f o r  t h e  y phase but the  @-hexagonal modif icat ion i s  c l e a r l y  

present. .  This is i n t e r e s t i n g  because t h i s  phase is not s t a b l e  a t  room 

temperature.  However, the  r a t e  wi th  which the  uns tab le  B phase t r a n s -  

forms t o  y must be neg l ig ib l e  s ince  none of t h e  l a t t e r  phase was ob- 

served a f t e r  many days had elxpsed between evagoration and X-ray d i f -  

f r a c t i o n  ana lys i s  of t h e  f i l m ,  Cardona and Bottger  and Geddes a l s o  

found t h a t  t h e  AgI t h i n  f i lms  which they  s tudied  were i n  the  wur t z i t e  

modif icat ion.  Our X-ray s t u d i e s  show t h a t  the  films used i n  these  in- 

ves t iga t ions  were c h a r a c t e r i s t i c  of po lyc rys t a l l i ne  pure AgI which is  
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h i g h l y  o r i en ted  i n  t h e  (002) d i r e c t i o n  wi th  a p a r t i c l e  s i z e  of about 

800 8 (see Table I V . Z ) ,  The sample des igna t ions  on t h e  d a t a  t o  be 

presented  i n  t h i s  ch+pter a r e  followed by  a 'I@'' to emphasize t h e  AgI 

phase to which t h e  results +pply. 

The AgI photoemission data was reproducible  among t h e  samples 
0 s tudied .  This i s  shown i n  Fig. 9.2 for two samples at 80 K. It should 

FIGURE 9.2 Cornparison of energy d i s t r i b u t i o k s  normalized t o  
quantum y i e l d  (per incident  photon) f o r  e lectgons 
photoemitted from two AgI (B)  samples at 80 K 
for photon energ ies  of 8.1 and 11.3 e U .  

216 



b e  emphasized again t h a t  t h e  two s e t s  of  curves are ind iv idua l ly  

normalized t o  t h e i r  own y i e l d  and have t h e i r  energy s c a l e s  independently 

determined. 

a t  about 

dependent c h a r a c t e r i s t i c s  e 

is  a very  s e n s i t i v e  t e s t  of t h e  r e p r o d u c i b i l i t y  of t h e  data, 

A s  w i l l  be d iscussed  i n  s e c t i o n  C, t h e  peaks which appear 

Therefore, t h e  exce l l en t  agreement a t  90°K 
E = 7.6 eV i n  these  EDCs a r e  q u i t e  d i s t i n c t i v e  temperature 

The EDCs are a l s o  reproducible  fol lowing numerous temperature 

cyc les  between room and l i q u i d  n i t rogen  values as shown by Fig. 9.3. 
The number of times t h a t  t h e  sample was cooled t o  9OoK is indica ted  i n  

parentheses .  Since t h e  two curves taken 20 cyc les  apart a re  indepen- 

d e n t l y  normalized, t h e  s t a b i l i t y  of  t h e  y i e l d  i s  a l so  seen t o  be q u i t e  

good, This f i g u r e  a l s o  i l l u s t r a t e s  the  s t a b i l i t y  of  t h e  samples wi th  

t ime. Over a pe r iod  of  more than  two weeks, no s i g n i f i c a n t  changes i n  

t h e  &I EDCs occurred.  Note a l s o  t h a t  if  pho to ly t i c  decomposition 

was s i g n i f i c a n t  i n  these  t h i n  fi lms, one would expect a slow degradat ion 

of t h e  EDCs wi th  increas ing  exposure t o  W rad ia t ion .  Thus, t h e  data of 

F igo  9.3 shows t h a t  l igh t - induced  chemical r eac t ions  are not s i g n i f i c a n t  

f o r  t h e  A d  samDles s tud ied .  --.+ 

Elec t ron  microscop;' and optical116999 s t u d i e s  have e s t ab l i shed  

t h a t  evzporated t h i n  films a r e  good model s y s t e m s  f o r  t h e  s tudy of bu lk  

AgI p r o p e r t i e s .  I n  order  t o  determine if the  very t h i n  f i l m  used i n  

these  s t u d i e s  a r e  Ifgood" films, a very t h i c k  film was ev3porated under 

t h e  same condi t ions  (e.g., evzporat ion ra te  and s u b s t r a t e  temperature) 

A s  noted above, t h e  X-ray d i f f r a c t i o n  s tudy of t h i s  film showed it t o  be 

h igh ly  o r i en ted  p u r e  p o l y c r y s t a l l i n e  AgI ( B )  e I n  addi t ion,  it was 

fou.nd t h a t  a t  room temperature t h e  photoemission from t h e  very t h i n  film 

(220 8) was t h e  same 'as t h a t  measured from very t h i c k  films (0.30 p) as 

shown i n  Fig. 9.4. 
a11 t h e  s a l i e n t  f e a t u r e s  of  t h e  data zppear independent of th ickness .  

Since these  EDC'S a r e  independently normalized, t h e  y i e l d  is a l s o  seen 

t o  be  th ickness  independent i n  the  range. Unfortunately, t h e  t h i c k  f i lms  

could not be measured a t  

tance .  We can conclude from these  cons idera t ions  t h a t  t h e  very t h i n  films 

a re  r ep resen ta t ive  of  bulk AgI photoemission, As discussed i n  de t a i l  i n  

Though t h e r e  are s l i g h t  changes i n  t h e  EDC s t ruc tu re ,  

LN2 temperature because of t h e i r  high r e s i s -  



-a- 

FIGURE 9.3 m Comparison of energy d i s t r i b u t i o n s  normalized 
t o  quantum y i e l d  (pe r  inc ident  photon) for 
e l e c t r o n s  photoemitted f i f t e e n  days and twenty 
cool ing  cyc les  8.part from AgI ( B )  a t  80°K 
for a photon energy of 8.1 eV. 



FIGURE 9.4. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc ident  photon) f o r  e l ec t rons  
photoemitted from t h i c k  and t h i n  AgI (B) samples 
a t  2B°K f o r  a photon energy of 11.3 eV. 

Chapter IV,  t h e  th ickness  independence of t h e  photoemissive p r o p e r t i e s  

i nd ica t e s  t h a t  t h e  t h i n  films s tudied  were v i r t u a l l y  s t r a i n - f r e e .  

2 Photoemission Data C h a r a c t e r i s t i c s  

The only work repor ted  on t h e  photoemission from AgI has been 

concerned exc lus ive ly  with t h e  quantum y ie ld .  

y i e l d  measured i n  t h i s  s tudy and the previous work of Peterson7' and 

Fleischmann7' is made i n  Fig. 9.5 a The break i n  our y i e l d  a t  about 

6.7 eV and t h e  lower energy region i s  due t o  e l ec t rons  photoemitted 

from t h e  s i l v e r  s u b s t r a t e  through t h e  sample film (as discussed i n  

ChFpter I V )  and should be neglected f o r  t h e  purposes of t he  present  

A comparison of t h e  



FIGURE 9.5. Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  of  
e l ec t rons  photoemitted per incident  photon from AgI a t  2S0K from 
t h i s  work and t h e  works of Peterson ( re ference  77) and Fleischmann 
( re ference  74) e 
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discuss ion .  The previous y i e l d  has a b i t  h igher  value i n  t h e  s a t u r a t i o n  

region above th re sho ld  bu t  t h e  d i f fe rences  of i n t e r e s t  are i n  t h e  thresh-  

o l d  region.  A s  was t h e  case for t h e  measurements of t h e  o the r  s i l v e r  

ha l ides  by these  same workers ( see  Chapter 111), t h e i r  y i e l d  near th resh-  

o ld  has a smaller s lope  and has a lower onset  by over 1 eV than  does t h e  

quantum y i e l d  measured i n  t h e  p re sen t  work. If we t ake  i n t o  account our 

d e t a i l e d  ana lys i s  i n  Chapter 111 of these  d i f f e rences  i n  y i e l d  as w e l l  

as EDCs of AgBr  and A g C l  , we must conclude t h a t  t h e  AgI d i f f e r -  

ences occur because t h e  ea r l i e r  d a t a  is dominated by sur face  contami- 

na t ion  e f f e c t s .  Thei r  quest iona5le  sample handl ing and prepara t ion  

procedures,  l e a d  us t o  be l i eve  t h a t  t h i s  i nves t iga t ion  is t h e  f i rs t  

measurement of photoemission represent  a t  ive of bu lk  AgI p r o p e r t i e s  e 

4'3 

There is a c t u a l l y  only a very small amount of l i t e r a t u r e  on t h e  

e l e c t r o n i c  s t a t e s  and o p t i c a l  t r a n s i t i o n s  i n  AgI . O u r  s t u d i e s  are 

t h e  f i rs t  measurement of EDCs f o r  AgI. The o p t i c a l  p r o p e r t i e s  i n  t h e  

W have only been s tud ied  t o  a :photon energy of 3 e 2  eV; measurements of 

It is i n t e r -  t h e  B phase of A g I  are only repor ted  up t o  3.9 eV. 

es t ing t o  note t h a t  t h e  s a l i en t  f e a t u r e s  of t h e  absorpt ion spectrum of 

t h e  y-cubic phase show no l a r g e  sharpening e f f e c t s  upon cool ing from 

297 t o  80°K f o r  hV between 4.1 and '3.2 eV.  

116 

116 

One of t h e  th ings  which makes it so d i f f i c u l t  t o  analyze t h e  d a t a  

f o r  t h i s  s i lver  h a l i d e  is t h a t  no ca l cu la t ions  have been repor ted  f o r  

t h e  e l e c t r o n i c  s t a t e s  of AgI . Therefore, t h e  similarities of t h e  

AgI 
s i l ve r  h a l i d e s  i s  t h e  most d e f i n i t i v e  method ava i l ab le  f o r  es t imat iqg  

t h e  nature of t h e  AgI states.  To ob ta in  an o v e r a l l  view of t h e  d a t a  

c h a r a c t e r i s t i c s ,  t h e  s t r u c t u r e  p l o t s  f o r  AgI 

at 295'K [part (a)]  and '3O'K [part (b ) ]  a A l l  t h e  genera l  f e a t u r e s  of 

t h e  s t r u c t u r e  p l o t s  discussed i n  t h e  l as t  chapter  a re  present  i n  A g I  

plus one new e f f e c t .  

throughout a l l  t h e  d a t a  so it would Fppear t o  be a k-conserving t r a n s i -  

t i o n .  The -4.4 e V  dens i ty  of states peak is temperature independent i n  

.pos i t ion  even wi th  t h e  considerable  modulation of  a l l  t h e  o the r  data, 

including t h e  l ead ing  edge. This type of behavior  of t h e  AgI EDC 

temperature dependent photoemission d a t a  of those of t h e  o the r  

a re  presented  i n  Fig. 9.6 

The -1.7 e V  valence s t a t e  s t r u c t u r e  does not occur 
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FIGURE 9.6(a). Spec t r a l  d i s t r i b u t i o n  of t h e  AgI ( B )  EDCS' s t r u c t u r e  
and edges at 2955'K. Unit and zero  s lope l i nes ,  with 
t h e i r  e l e c t r o n  energy-axis in te rcepts ,  a r e  shown f i t  
t o  appropr ia te  d a t a ,  
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PHOTON ENERGY, h v (e\/  ) 

FIGURE 9.6(b).  S p e c t r a l  d i s t r i b u t i o n  of t h e  AgI (p) EDCs' s t r u c t u r e  
and edges at '30°K. 
t h e i r  e l e c t r o n  energy-axis in te rcepts ,  a r e  shown f i t  
t o  3ppropriate  da ta .  

Unit and zero  s lope l i nes ,  with 



l ead ing  edge wi th  hV v a r i a t i o n  was not observed for AgBr or AgCl e 

A s  can be seen a t  both  room and l i q u i d  

edge ex t r apo la t ion  fol lows two d i s t i n c t i v e l y  d i f f e r e n t  l o c i  on t h e  

s t r u c t u r e  p l o t .  

t i o n  process  because a t  80°K t h e r e  i s  evidence f o r  t h e  -0.5 e V  l i n e  i n  

t h e  s t r u c t u r e  o f  t h e  EDCs (i.e., shoulders ) .  The conduction s ta tes  show 

bo th  of  t h e  e f f e c t s  observed i n  t h e  o the r  s i l v e r  ha l ides .  There are two 

high d e n s i t y  of states regions i n  t h e  conduction band which a r e  tempera- 

ture  dependent, 

and 80°K (as i n  AgCl 

observed a t  low temperatures (as i n  AgBr a t  8-8 eV) e With t h i s  very 

gene ra l  overview as an introduct ion,  t h e  d a t a  corresponding t o  each of 

t hese  f e a t u r e s  w i l l  be  examined i n  d e t a i l  to b e t t e r  understand i t s  

com.plete c h a r a c t e r i s t i c s  and perhaps t o  es t imate  i t s  o r i g i n  i n  the  

e l e c t r o n i c  s ta tes .  It is important t o  note t h a t  t he  room temperature 

s t r u c t u r e  p l o t  f o r  C U I  

AgI p l o t  a t  295OKI 
very f r u i t f u l .  

N2 temperature, t h e  lead ing  

This cannot be due t o  simple e r r o r  o f  t h e  ex t rapola-  

The one at 7*8 e V  produces e f f e c t s  i n  the  EDCs a t  295 
at 8*1 eV)  while  t h e  7.1 eV s t r u c t u r e  is only 

9 1  shows very l i t t l e  if  any s i m i l a r i t y  t o  t h e  

Thus, c o q a r i s o n  of s i l v e r  to cuprous iodide is  not 

B e  The Hybridized I 3p-Derived E lec t ron ic  Valence S t a t e s  

The -1.7 e V  valence band s t r u c t u r e  and nature of t h e  valence band 

m a x i m u m  w i l l  be  d iscussed  i n  t h i s  sec t ion .  The EDCs which show t h e  

c h a r a c t e r i s t i c s  of t h i s  s t r u c t u r e  a r e  presented i n  Fig.  9.7 f o r  photon 

energ ies  from 9.8 through 10.8 eV. 

s t r u c t u r e  of AgBr and A g C l  , t h e  EDC s t r u c t u r e  which o r ig ina t e s  a t  

-1.7 eV i n  t h e  AgI valence s t a t e s  can be  seen to come i n t o  t h e  EDCs 

on t h e  lead ing  edge over a r e l a t i v e l y  small photon energy range. 

important, t h i s  s t r u c t u r e  sharpens considerably upon cool ing t o  90 K1 

It should be  r e c a l l e d  t h a t  by t h e  dynamic hybr id iza t ion  model only those  

s t a t e s  whose wavefunct ions involve s i g n i f i c a n t  p-d mixing w i l l  e x h i b i t  

a temperature dependence many t imes t h e  change i n  5 T  e I n  f a c t ,  t h e  

temperature dependence of  t h i s  peak width obeys t h e  same func t iona l  

r e l a t i o n ,  Eq. (5.7)? as t h e  halogen p-derived s t r u c t u r e  of AgBr  and 

A g C l  This was measured f o r  t h e  &I peak i n  quest ion a t  two photon 

A s  was t h e  case f o r  t h e  --Oe!3 eV 

E q u a l l y  
0 
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FIGURE 9.7. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per incident  photon) f o r  e l ec t rons  
photoemitted from AgI (p)  a t  80 and 2S0K f o r  
photon energ ies  of 9.3 through 10.9 eV.  



ene rg ie s  and was found to be v i r t u a l l y  t h e  same a t  both.  

summarized i n  Table IX.1 t h a t  is  to be presented i n  t h e  las t  sec t ion . )  

It seems reasonable, from t h i s  s t r u c t u r e ' s  temperature dependence and 

i t s  s i m i l a r i t y  t o  AgBr and AgCl s t ruc tu re ,  t h a t  i ts -1.7 eV o r i g i n  

is composed of hybridized I 5p-derived s t a t e s .  I n  addition, t r a n s i -  

t i o n s  from these  s ta tes  appear to conserve c r y s t a l  momentum i n  the  

o p t i c a l  e x c i t a t i o n  process  because of  i t s  abrupt onset.  

(This is 

The behavior of t h e  EDC l ead ing  edge with photon energy v a r i a t i o n  

is q u i t e  s t r i k i n g  as seen on t h e  s t r u c t u r e  p l o t s  of Fig. 9.6. 
change i n  p o s i t i o n  around 10,O eV is  c l e a r l y  depic ted  i n  Fig.  9.7; t h e  

90°K EDC leading  edges a r e  p a r t i c u l a r l y  i n t e r e s t i n g .  

and 10.2 eV a d i s t i n c t i v e  shoulder emerges on t h e  long s t r u c t u r e l e s s  EDC 

nose. 

wi th  t h e  lead ing  s i d e  of t he  neighboring -1.7 e V  peak a t  

The EDC'S l ead ing  edge r e a l l y  is q u i t e  d i f f e r e n t  a t  t h i s  photon energy 

compared to i ts  shape a t  9.9 eV. Such an observance has been noted 

before  f o r  t h e  h ighly  covalent group I V  and 111-V semiconductors {Ge  i s  

a p a r t i c u l a r l y  f i n e  example of t h i s )  e 31 

The r ap id  

Between hV = g e 8  eV 

This reaches a m a x i m u m  a t  about 10.4 eV and then  becomes merged 

hV = 10.9 eV - 

I n  each of  these  cases  t h e  

onset of  t he  s t r u c t u r e  was a s soc ia t ed  wi th  d i r e c t  o p t i c a l  t r a n s i t i o n s  

from t h e  valence band maximum. The weakness of t h i s  EDC s t r u c t u r e  and 

t h e  ca l cu la t ed  energy bands ava i l ab le  f o r  t hese  s o l i d s  ind ica ted  t h a t  

t hese  h ighes t  valence s t a t e s  were a t  r' e A l l  t h a t  we have t o  analyze 

f o r  AgI is t h e  s t r e n g t h  and behavior of t h e  EDC s t ruc tu re .  On t h e  

b a s i s  of t he  comparison t o  these semiconductors, t h e  weakness of  t h i s  

AgI valence band m a x i m u m  s t r u c t u r e  po in t s  t o  t h e  highest  valence s t a t e s  

occurr ing at F It should be  noted t h a t  t h e  s t r eng th  of t he  exc i ton  

abscrp t ion  spectrum of 

d i r e c t  allowed t r a n s i t i o n s ,  o r i g i n a t i n g  from I p-derived states a t  t h e  

cen te r  of t h e  zone. 

t h e  valence band maximum occurs at r . 

AgI l e d  Cardona to p r e d i c t  t h e  occurrence of  

Thus, t h e  o p t i c a l  p rope r t i e s  a l s o  suggest t h a t  116 

One can f u r t h e r  es t imate  t h a t  t h e  second, lower energy (= -0.45 e V )  

p o s i t i o n  of  t h e  lead ing  edge ( see  Fig.  9.6) corresponds to a d i f f e r e n t  

group of s t a t e s  i n  t h e  valence band which are a l s o  der ived from t h e  

I 5 p  o r b i t a l s .  If t h e  assumption of  d i r e c t  t r a n s i t i o n s  from I' is  
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v a l i d  f o r  t h e  h ighes t  l ead ing  edge pos i t ions ,  then  it would follow t h a t  

t h e  absence of such t r a n s i t i o n s  between hv = 3-3  and 10.0 eV [see 

Fig.  9.6(b)] probably implies a l a c k  of conduction states a t  I? i n  t h i s  

energy range. Since t h i s  reg ion  occurs f o r  near ly  2 eV, it would follow 

t h a t  t h e  states which a r e  seen about 0.5 e V  below t h e  h ighes t  ones occur 

i n  a r eg ion  away from t h e  cen te r  of t h e  B r i l l o u i n  zone. The absence of 

E = hv t r a n s i t i o n s  for some 2 e V  may a l s o  be due t o  conduction states 

at r whose symmetry is  such t h a t  o p t i c a l  t r a n s i t i o n s  from p states 

are unallowed; however, t h i s  explana t ion  seems less l i k e l y .  We can 

the re fo re  estimate t h e  l o c a t i o n  i n  t h e  zone where t h e  -0.45 eV AgI 
valence s t r u c t u r e  i s  probably not loca ted .  

C .  The E lec t ron ic  Conduction S t a t e s  of AgI 

A t  t h e  end of t h e  l as t  s e c t i o n  it was poin ted  out t h a t  t h e  nature  

of t h e  conduction s ta tes  could be estimated us ing  t h e  sssumed r symmetry 

of t h e  h ighes t  valence states and t h e  assumed importance of k-conservation 

as a s e l e c t i o n  rule  f o r  t r a n s i t i o n s  from these  s t a t e s .  It would follow 

t h a t  t h e  absence of t r a n s i t i o n s  from these  p-derived states i n  t h e  region 

from 3*3 t o  10.0 e V  [see Fig. 9.6(b)l was due e i t h e r  t o  t h e  absence of  

conduction s t a t e s  a t  I' i n  t h i s  range o r  t o  t h e  f i n a l  states a t  I' 

having such a symmetry (e.g., p - l ike)  so as t o  cause t h e  t r a n s i t i o n s  t o  

be unallowed. This i s  somewhat specula t ive  b u t  is included as basis f o r  

future ana lys i s  of t h i s  data. 

pendent between 295 and 80°K. 

9.0 and 9.2 eV EDCs had t o  be reduced by ZO$ t o  be presented on the  same 

s c a l e  as t h e  o t h e r  two s e t s  of  curves.  This peak is  roughly s t a t i o n a r y  

a t  E = 7 - 3  eV . I t s  width v a r i a t i o n  fol lows t h e  same func t iona l  rela- 

t i o n  [Eq. (5 .7)]  as t h e  p-derived valence s t r u c t u r e ;  t h e  parameters f o r  

t h i s  exponent ia l  behavior  a r e  included i n  Table IX.1 i n  s ec t ion  E below 

f o r  t h e  hV = 9.2 e V  EDCs. This 7.5 e V  conduction s t a t e  s t r u c t u r e  is 

q u i t e  no t iceable  i n  t h e  higher photon energy EDCs of Fig.  9.9. The 

cen te r  s t r u c t u r e  which disappears  between 

be seen to remain s t a t i o n a r y  a t  about 7.3 e V  i n  t h e  EDCs. 

The conduction s t a t e  reg ion  a t  7e9 e V  is s t rong ly  temperature de- 

This is depic ted  i n  Fig. 9#3 where t h e  

hV = 11.4 and 11.6 eV can 

A t  t hese  high 
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FIGURE 9.8. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (pe r  inc ident  photon) for e lec t rons  
photoemitted from AgI (B) at 80 and 2S0K f o r  photon 
energ ies  of  9.0 through 9.6 eV. 
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photoemitted from &I (B )  a t  30 and 295'K f o r  
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energ ies  t h i s  s t r u c t u r e  is q u i t e  temperature dependent as seen when the 

intermediate temperatures a r e  included i n  Fig.  9.10. At both  hV = 1l03 
and 10.6 eV the  E = 7.3 eV s t r u c t u r e  sharpens from a shoulder at room 

r I I r I I 1 I I I I I I 

i l  

10.6 rV 

Ev+ r.Q 8.0 9.0 10.0 11.0 
ELECTRON ENERGY, E (cV) 

FIGURE 9.10. Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per  inc ident  photon) f o r  e l ec t rons  
photoemitted from 
f o r  photon energ ies  of 10-6 and 11*3 eV. 

AgI (B) a t  30 through Z 9 5 O K  

temperature t o  a peak at 3OoK i n  a continuous manner. 

temperature dependence and i ts  func t iona l  behavior f o r  the  conduction 

T h i s  s t rong  



s t r u c t u r e  is highly suggestive of s t a t e s  whose o r b i t a l s  are s i g n i f i c a n t l y  

hybridized 

The temperature dependences of t he  conduction s t a t e  s t r u c t u r e  at 

both 7.8 and 7.1 eV a re  both qu i t e  dramatical ly  seen and t h e i r  charac- 

t e r i s t i c s  can be compared at low photon energ ies  as shown i n  Figs. 

9 , l l ( a )  and (b) e I n  t h i s  energy range, t h e  p-derived valence e l ec t rons  

are being exc i t ed  i n t o  t h e  7.1 eV conduction states a t  about 

u n t i l  it passes  through and out of these  f i n a l  s t a t e s  i n t o  t h e  7.8 eV 

s t a t e s  at around 8.6 eV. A s  was shown i n  Fig. 9.?1, t h e  EDC peak then 

remains s t a t i o n a r y  a t  7@8 eV u n t i l  the  -lr7 eV s t r u c t u r e  c l e a r l y  emerges 

at photon energies  beyond hV = ge9  eV e The 'presence of these  two 

d i s t i n c t  conduction s t a t e  regions is dramat ica l ly  seen when they sharpen 

at 80°K.  

8.2 eV as  t h e  valence s t a t e s  move between t h e  two regions.  

t he  photon energy d i f f e rence  between when t h e  e x c i t a t i o n  is  pr imar i ly  t o  

one or t h e  o ther  of t h e  conduction s t a t e  regions is around 0.6 eV 

(9.4-7*'3 eV)  which is near ly  t h e  exact separa t ion  of t h e  two f i n a l  s t a t e  

peaks (I The temperature dependence of these  two conduction s t a t e  regions 

is  d i s t i n c t l y  seen when the  intermediate  temperatures a re  included f o r  

t h e  EDC a t  t he  photon energy i n  t h e  center  of t h i s  range, 

t h i s  is depicted i n  Fig.  9,U. 
divided i n t o  two peaks a t  80°K which a re  a t  energies  d i f f e r e n t  from t h e  

o r i g i n a l  one, 

i s  seen at hv = 9.2 e V  i n  t h i s  f i g u r e  ( c h a r a c t e r i s t i c s  are  given i n  

Table I X . 1 ) .  It is  i n t e r e s t i n g  t h a t  even though t h i s  higher  energy 

region appears more temperature dependent by these  EDCs, the  7.1 eV 

region is  only c l e a r l y  loca teable  a t  9O0K as shown by t h e  s t r u c t u r e  p l o t s  

of Figs .  g a 6 ( a )  and ( b ) ,  Therefore, it is d i f f i c u l t  t o  d i s t i ngu i sh  any 

major d i f f e rences  between the  temperature dependences of t he  two regions., 

We can only est imate  t h a t  t h e  7.1 eV region probably has the  same general  

hybridized c h a r a c t e r i s t i c s  as  t he  7*5 eV region. 

be mixed t o  a l e s s e r  extent  or j u s t  is of l e s s e r  s t rength  than the  7.8 eV 

s t r u c t u r e  s ince  the  l a t t e r  i s  so  much more ,prominent i n  the  EDCs. 

hv = 7.4 eV 

I n  Fig. g . l l ( a )  and (b),  one sees  two peaks a t  hv = 9.0 and 

Note t h a t  

hY = 8 * l  eV ; 

Note t h a t  t h e  one peak a t  2 9 O K  is 

The temperature dependence of t h e  7.9 eV region alone 

The 7*1 eV region may 
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FIGURE 9,11(a) e Comparison of energy d i s t r i b u t i o n s  normalized t o  
quantum y i e l d  (per inc ident  photon) f o r  e l ec t rons  
photoemitted from AgI (P) at 80 and 2B°K for 
photon energies  of 7,4 through 8 , O  eV. 
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FIGURE 9 a 11 (b) e Comparison of energy d i s t r i b u t i o n s  normalized 
t o  quantum y i e l d  (per inc ident  photon) f o r  
e l ec t rons  photoemitted from A g I  (B) a t  90 
and 2S0K f o r  photon energ ies  of  9,2 through 
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FIGURE 9-12 Comparison of energy d i s t r i b u t i o n s  normalized 
to quantum y i e l d  (per incident  photon) f o r  
e l ec t rons  photoemitted from AgI (B )  at 
80 through 285'K for photon energ ies  of 3.1 
and 9,2 eV. 



From our ex.perience with the  o ther  ha l ides  ( see  Chapter V I I I )  it is  

reasonable t o  be l i eve  t h a t  t hese  conduction s t a t e  regions a r e  

der ived involving s i g n i f i c a n t  mixing with Ag 3p s t a t e s .  A s  w i l l  be  

seen i n  t h e  next sect ion,  t r a n s i t i o n s  from t h e  valence s t a t e s  with an 

est imated pure d symmetry a re  q u i t e  s t rong  up t o  E = 7.4 eV ( t h i s  

OCCLWS a t  t he  l i m i t  of our measurements 

may be  due t o  t h e  f i n a l  s t a t e s  being such t h a t  t h e  t r a n s i t i o n s  a re  

allowed by symmetry. By these  considerat ions,  t h e  regions would appear 

t o  be Ag 5p-derived s t a t e s  with s i g n i f i c a n t  I 5 d  mixing ins tead  of 

t h e  converse. Thus, t he  two assignments seem equal ly  l i k e l y ,  Note t h a t  

t h e  7.1 eV region could not be p-derived and t h e  7.3 eV d-derived s ince  

these  conduction s t a t e s  a re  normally ordered i n  t h e  opposi te  way i n  t h e  

s i l v e r  halides.419396 A Ag 5 s  

I 5d- 

hV = lla8 eV)e This s t r eng th  

o r i g i n  seems l e a s t  l i k e l y  s ince  one 
does not expect s i g n i f i c a n t  hybr id iza t ion  f o r  such o r b i t a l s  e 3, 112 

D. The "Furerr Ag 4d Elec t ronic  Valence S t a t e s  

A t  a photon energy of around 11.1 eV, a new peak emerges on the  

t r a i l i n g  s ide  of t h e  EDC which dominates t h e  curves. This is seen by 

t h e  curves i n  Fig. 9.9. This is t h e  s t r u c t u r e  o r ig ina t ing  -4.4 eV i n  

t h e  valence s t a t e s  as shown on t h e  s t r u c t u r e  p l o t s  of Fig. 9.6. 
huge s t r eng th  of t h i s  peak is  demonstrated by t h e  necess i ty  f o r  reducing 

t h e  higher  energy 11.6 and 11.3 eV EDCs by 50% i n  order  t o  f i t  them on 

the  same sca l e  as the  r e s t  of  t he  curves.  Further, t h e  y i e l d  shows a 

dramatic increase when t h i s  s t r u c t u r e  does emerge above threshold  at 

11.1 eV as seen i n  Figs .  9.13(a) and ( b ) .  

temperature dependence of t h e  y i e l d  i s  seen above the  threshold  region, 

On t h e  l i n e a r  s c a l e  of part  (b) of t he  f igure ,  t h i s  dependence of t h e  

y i e l d  on temperature i s  seen t o  be gradual.  The -4,4 eV EDC peak shows 

some height  v a r i a t i o n  i n  Fig. 9.9, but t h e  peak width i s  found t o  be 

temperature independent. This can be seen i n  Fig. 9 , l O  a t  hV = 11.3 eV e 

The l e f t  peak is a c t u a l l y  reduced i n  height  upon cool ing a t  t h i s  photon 

energy, 

upon cool ing,  

below f o r  completeness. 

The 

I n  Fig.  9.13(a) t h e  only 

However, t he  w i d t h , a t  90% of i t s  maximum height  does not change 

This temperature independence is entered i n  Table IX.1 
As was discussed f u l l y  i n  Chapter VI,  the  



FIGURE 9.13(a). Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of  the y i e l d  
of e l ec t rons  photoemitted p e r  inc ident  photon from AgI (@) a t  80 and 
295OK. 
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FLGURE 9.13(b) Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of e lec t rons  photoemitted p e r  incident  photon from AgI ( 0 )  at 80 
through 295'K. 

temperature independent d a t a  can be r e l a t e d  t o  t h e  s ta tes  which a r e  not 

formed from hybridized mixtures of two or more o r b i t a l s .  That is, t h e  

states corresponding to such EDC s t r u c t u r e  has almost t h e  pure symmetry 

of one type of o r b i t a l .  It was found for AgBr and A g C l  t h a t  t he  most 

reasonable  a s soc ia t ion  t o  make, based on pre l iminary  band ca lcu la t ions ,  

237 



was t h a t  t hese  states were Ag s t a t e s  with almost pure 4d symmetry. 
Comparing the  AgI r e s u l t s ,  which a lso show a temperature independent 

peak below t h e  valence band maximum, it is  reasonable t o  a s s ign  t h e  

-4.4 eV valence band dens i ty  of s ta tes  peak t o  

pure 4d symmetry. 

Ag states wi th  almost 

E.  Summary 

A s  was poin ted  out above, of t h e  f i v e  AgI EDC peak widths whose 

teDperature  dependences could be measured, a11 of them obey t h e  same 

exponent ia l  dependence on temperature as t h a t  deduced f o r  AgBr and 

A g C l  i n  Chqpter V. The cons tan ts  of Eq. (5.7) which cha rac t e r i ze  

t h e s e  dependences are summarized i n  Table IX.1. 

TmLE IX.1. Parameters which de f ine  t h e  exponent ia l  temperature 
dependence of t h e  A g I  (B) 9C$ EDC peak width, W 
given by  Eq. (5 .7) :  Wo is t h e  f rozen  l a t t i c e ,  EDC 
width and C is a measure of t h e  temperature dependence. 

n 

-4.4 11.3 0.23 0 

-1-7 11,3 0.47 0.19 
1 -1.7 10.6 0.49 0.i5 

~ Dt  9.2 0.29 0.13 
D* ( a )  9.1 0,14 0.12 

IC D = Direc t  

1 = Left half-width 

t~ = 7.8 e V  

*E = 7.1 e V  

The EDC peaks whose 9O$ widths were measured are i d e n t i f i e d  by  t h e i r  

o r i g i n  i n  t h e  d e n s i t y  of  valence states ( i e e o 9  .-4,4 and -1.7 e V )  o r  by 

t h e  na ture  of t h e  o p t i c a l  e x c i t a t i o n  process  ( i e e o ,  d i r e c t  t r a n s i t i o n  - 
D ) i f  t h e  ,peak does not o r i g i n a t e  from one i n i t i a l  s t a t e  energy for 11 11 
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a l l  photon energ ies .  A t  ht' s 9.1 e V  only t h e  l e f t  half-width of t h e  

peak could be measured over a l a r g e  temperature range, and t h i s  is 
ind ica ted  by  an ",8". Recal l  again t h a t  Wo is a measure of t h e  EDC 
width a t  

t h e  ions.  

o rder  Green's Function c a l c u l a t i o n  based on t h e  dynamic hybridiza-  

t i o n  model [i.e., Eq. (5.8)Ip1" it is  reasonable t o  assume t h a t  t h i s  

d e s c r i p t i o n  of t h e  temperature dependence of t he  photoemission is  as 
v a l i d  f o r  AgI as it was f o r  t h e  o ther  s i l v e r  ha l ides .  

T = O°K if  t h e r e  were no s i g n i f i c a n t  zero-point v i b r a t i o n  of 

Since t h i s  dependence was p red ic t ed  by Doniach us ing  a f irst  

The information which was determined f o r  t h e  e l e c t r o n i c  s t a t e s  of 

AgI is  summarized i n  Table IX.2. 

8.3 -, 10.0, 10.6 -, > 11.9 
7.89 7.1 

6.6 
0 

-0.45 
-1.7 

-4.4 & 0.1 

TABLE IX.2. Summary of  information determined f o r  t h e  e l e c t r o n i c  
s t a t e s  of AgI i n  t h e  hexagonal (B) phase. 

I ' p  S t a t e s  o r  No I' S t a t e s  

Ag (5P) o r  1 (5d) H 
Vacuum Level 

I' Valence Band M a x i m u m  

I (5p), Not @ r H 

1 (5x4 H 

Ag (4d) P 

I O R I G I N  DEGREE OF MIXING* I ENERGY (ko.2) 
(4 

A t  each of t h e  energ ies  l i s t e d ,  some d e f i n i t e  f e a t u r e  i n  the  EDC s t ruc -  

tu re  can b e  i d e n t i f i e d ;  t hese  were poin ted  ' ou t  i n  t h e  d iscuss ion  above. 

Because t h e  :posi t ions devia te  from s t r a i g h t  l i n e  l o c i  on a s t r u c t u r e  p l o t  

much more f o r  AgI than  t h e  o the r  two ha l ides  (compare Fig. 9.6 t o  

Figs.  8.1 and f3.3), t h e  unce r t a in ty  i n  t h e s e  energ ies  i s  be l ieved  t o  be 

+0,2 e V  except f o r  t h e  -4.4 e V  s t r u c t u r e  as noted i n  t h e  table ,  The 
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o r i g i n  and explana t ions  which have been made and seem reasonable should 

only serve  as suggestions t o  guide f u t u r e  ana lys i s  of t h e  AgI e l ec -  

t r o n i c  s t a t e s  s ince  s o  very l i t t l e  is known about them a t  t h e  present  

time e 
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x. coNcLusIoNs 

A. The E lec t ron ic  S t a t e s  and Elec t ron-Lat t ice  I n t e r a c t i o n  

i n  t h e  S i l v e r  Halides 

The major new f e a t u r e  of t h i s  work is  t h e  discovery of a tempera- 

t u r e  dependence of c e r t a i n  s t r u c t u r e  i n  t h e  energy d i s t r i b u t i o n s  of 

photoemitted e l e c t r o n s  which i s  an order  of  magnitude greater than  t h e  
change i n  thermal  energy, 

observa t ion  of what may prove t o  b e  a whole new c l a s s  of e f f e c t s  i n  

s o l i d s  which s a t i s f y  t h e  gene ra l  c r i t e r i a  l i s t e d  a t  t h e  end of Chapter 11. 

It is be l ieved  due t o  a very s t rong  i n t e r a c t i o n  of t h e  e l ec t rons  with 

the  l a t t i c e ,  very much l i k e  t h e  Jahn-Tel ler  e f f e c t  bu t  many times 

s t ronge r .  A model r e f e r r e d  t o  as "dynamic wavefunction hybridizat ion" 

has been proposed i n  a very gene ra l  sense t o  descr ibe  the  manner i n  

which t h e  v i b r a t i o n s  of t h e  ions may e f f e c t  t h e  energ ies  of t h e  e lec-  

t r o n i c  s t a t e s  so  s t rongly .  Applying t h i s  model i n  a very genera l  way, 

t h e  s i l v e r  s ta tes  wi th  almost p u r e  symmetry could be loca ted  by 

experiment wi th  reasonable c e r t a i n t y  f o r  t h e  f irst  time; t hese  loca-  

t i o n s  were 3.7, 3.3, and 4.4 e V  below t h e  h ighes t  f i l l e d  s t a t e s  i n  AgBr, 

AgC1, and AgI r e spec t ive ly .  By us ing  a very s i m p l e  approximation of 

k = 0 o p t i c a l  phonons and r e s t r i c t i n g  t h e  extent of t h e  i n t e r a c t i o n  t o  

about one neares t  neighbor dis tance,  t h e  proposed model was appl ied t o  

t h e  AgCl energy bands and pressure  dependent o p t i c a l  absorpt ion data. 

These computations demonstrate i t s  p l a u s i b i l i t y  by p r e d i c t i n g  t h e  proper 

magnitudes f o r  dens i ty  of s t a t e s  peak broadenings and t h e i r  temperature 

dependences. O f  course, it must be emphasized t h a t  t h e  physics  i s  r e a l l y  

much more complex. A s  i n  t h e  case of t h e  Jahn-Teller e f f ec t ,  t h e  frozen- 

l a t t i c e  approximation is  not va l id ,  and one must r e a l l y  consider  wave- 

func t ions  of t h e  e n t i r e  s o l i d  (e,g., v ibronic  s t a t e s )  r a t h e r  than  sepa- 

r a t e  e l e c t r o n i c  and nuclear  p a r t s .  This f u r t h e r  i m p l i e s  t h a t  t he  e n t i r e  

concept of an energy band s t r u c t u r e  i s  q u i t e  suspect .  There is, therefore ,  

This probably represents  t h e  first kBT 

, 

4d 
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much work t o  be done t o  t h e o r e t i c a l l y  account f o r  such many-body i n t e r -  

ac t ions  accura te ly ,  As was noted i n  Chapter V, Doniach has begun a . 

Green's func t ion  c a l c u l a t i o n  of  t h e  problem which takes  i n t o  account t h e  

randomness of t h e  ion ic  motion., lo' 

dynamic hybr id iza t ion  p i c t u r e  is, i n  general ,  a p r q e r  r ep resen ta t  ion 

f o r  t h e  phys ica l  phenomenonB Besides t h i s  b a s i c  conclusion and t h e  

probable  l o c a t i o n  of t h e  "pure" Ag 4d states, t h e  o the r  i n t e r p r e t i v e  

r e s u l t s  of t h i s  t h e s i s  must b e  considered only f irst  order  attempts at 

explaining many complex d a t a  features* It is  be l ieved  t h a t  t h e  photo- 

emission d a t a  i t s e l f ,  which was c a r e f u l l y  and l abor ious ly  taken using 

newly developed techniques, is q u i t e  accurate .  It should serve  as a 
good s torehouse of information f o r  t he  many f a s c i n a t i n g  quest ions which 

remain t o  be answered. 

His first  r e s u l t s  i nd ica t e  t h a t  t h e  

B. Suggestions f o r  Future Work 

There is obviously a g r e a t  deal of t h e o r e t i c a l  work t o  be done t o  

f u l l y  understand a l l  t h e  de ta i l s  of t h e  d a t a  presented  i n  t h i s  t h e s i s -  

However, we s h a l l  only suggest i n  t h i s  s e c t i o n  t h e  experimental  studies 

which seem valuable  extensions of t h e  p re sen t  work. 

A s  was seen i n  Chapter VI,  t h e r e  is a g r e a t  dea l  of i n t e r e s t i n g  EDC 

s t r u c t u r e  at  energ ies  above t h e  11.9 eV cu to f f  of t h e  LFF window. I n  

p a r t i c u l a r ,  t h e  hybridized Ag 4d states can be probed f o r  t h e  first 

time at these  higher  photon energ ies .  It would b e  most valuable  t o  be 

able t o  s tudy t h e  temperature dependence of t h i s  s t r u c t u r e  as well  as 

a11 t h e  valence band s t r u c t u r e .  

monochromator vacuum, it is impossible t o  make meaningful photoemission 

measurements at low temperatures without t h e  LiF window. It would 

the re fo re  be most valuable  t o  make t h e  necessary equipment rnodif i ca t ions  

t o  measure temperature dependent photoemission over t he  widest poss ib l e  

energy range e 

Because of t h e  poor q u a l i t y  of  t h e  

There are many i n t e r e s t i n g  fundamental quest ions which could be  

answered by s t u d i e s  of t h e  a l l o y s  o f  t h e  s i l v e r  ha l ides .  

pure AgBr  and A g C l  have o p t i c a l  absorpt ion f e a t u r e s  which are indica- 

t i v e  of  d i r e c t  t r a n s i t i o n s ,  It has been suggested by Joes ten  and Brown 

For example, 

57 
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t h a t  k-conservat ion is  not s t r i c t l y  v a l i d  f o r  t h e  homogeneous a l loys  of 

t hese  two s i l v e r  ha l ides .  It would be most i n t e r e s t i n g  t o  see i f  t h e  

EDC s t r u c t u r e  which may be due t o  d i r e c t  t r a n s i t i o n s  i n  t h e  pure mate- 

r i a l s  (e.g., t h e  - O e 8  eV s t r u c t u r e  i n  bo th  h a l i d e s )  changes uFon a l loy-  

ing. The e f f e c t  of a l loy ing  on t h e  l o c a t i o n  of t h e  d-peaks, which a r e  

sepa ra t ed  by 0.4 eV i n  t h e  pure s i l v e r  ha l ides ,  would be most informa- 

t ive e 

A s  discussed i n  Chapter IX,  AgI e x i s t s  i n  two phases at room 

temperature. One can a c t u a l l y  c o n t r o l  t h e  modif icat ion of t h e  film 

obtained by :proper adjustment of t h e  s u b s t r a t e  ternperature, Ts , 
dur ing  evaporation. We found i n  t h i s  s tudy  t h a t  f o r  T, = 7 5 O C  , t h e  

f i l m  i s  i n  t h e  @-hexagonal phase a t  room temperature and below. 

been repor ted  by Cardona t h a t  i f  Ts = 1 4 7 O C  , AgI condenses i n  t h e  

a phase but qpon cool ing  t o  room t eppera ture ,  it transforms t o  the  

It has 

s t a b l e  y-ZnS phase and remains as such a t  reduced temperatures. It 

would b e  very i n t e r e s t i n g  t o  study any d i f f e rence  which may occur be- 

tween t h e  EDCs f o r  AgI i n  t h e  two phases and a l s o  t h e i r  temperature 

dependences e 

It was poin ted  out throughout t h i s  t h e s i s  t h a t  t h e  o p t i c a l  proper- 

t i e s  of t h e  s i l v e r  h a l i d e s  i n  the  vacuum W have not been measured a t  

low temperatures.  Having found t h e  l a r g e  temperature dependence of t h e  

photoemission, it should prove very valuable t o  study t h e  temperature 

dependence of t h e  o p t i c a l  p r o p e r t i e s  of t hese  s o l i d s .  

important for i t s  own sake, but it w i l l  a l s o  allow us t o  normalize t h e  

low t eqpe ra tu re  EDCs t o  t h e  absorbed photon f l u x .  This w i l l  make com- 

pa r i son  of t h e  EDC s t r u c t u r e  he ights  meaningful. 

Not only is t h i s  

The temperature dependence of photoemission EDCs can be a powerful 

new technique f o r  studying t h e  e l e c t r o n i c  s t a t e s  and e l e c t r o n - l a t t i c e  

i n t e r a c t i o n  i n  s o l i d s  which s a t i s f y  t h e  c r i t e r i a  imposed by t h e  dynamic 

hybr id i za t ion  model ( see  t h e  end of Chapter 11). 

which have more than  one type of valence o r b i t a l  involved i n  t h e  bonding. 

For example, t h e  

halogen p s t a t e s  i n  t h e  s i l v e r  h a l i d e s .  (Th i s  question of bonding i n  

s o l i d s  wi th  "extra" e l e c t r o n s  is be ing  inves t iga t ed  by G. Lucovsky, t h e  

These include s o l i d s  

Ag 4d s t a t e s  must be considered along with t h e  



author, and o thers  a t  t h e  Xerox Palo Al to  Research Center.) 

s o l i d s  included i n  t h i s  group a re  the  cuprous and tha l lous  ha l ides .  As 

emphasized many times i n  Chapter V I I I ,  t h e  temperature dependence of 

cuprous ha l ide  photoemission would provide invaluable informat ion  about 

i t s  own p rope r t i e s  and a l s o  those of t h e  s i l v e r  ha l ides .  The tha l lous  

ha l ides  a re  p a r t i c u l a r l y  i n t e r e s t i n g  s ince  they a re  r e l a r e d  t o  the  noble 

metal  ha l ides  and a l s o  because very l i t t l e  is known about t h e i r  e lec-  

t r o n i c  s t a t e s  at t h e  present  time. By combining the  work from these  

groups of mater ia ls ,  a much more complete p i c t u r e  should be obtained 

f o r  the  e l e c t r o n - l a t t i c e  phenomena which is involved i n  t h i s  new e f f e c t  

as w e l l  as  f o r  t h e  e l e c t r o n i c  s t a t e s  of  each of t he  c l a s ses  of s o l i d s .  

Among t h e  
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APPENDIX A. THE OPTICAL CONSTANTS OF A g C l  AT 2S0K DETEXMINED BY THE 

KRAMERS-KRONIG ANALYSIS 

46 White and S t r a l e y  have r ecen t ly  publ ished the  o p t i c a l  constants  

of A g C l  a t  room temperature obtained by a Kramers-Krb'nig ana lys i s  of 

t h e i r  measured r e f l e c t i v i t y .  The r e s u l t i n g  values  f o r  a ,  K , and 

c2 
such anomalies have been observed i n  such ca l cu la t ions .  Morrison a l s o  

observed such d ips  f o r  semiconductors and be l ieved  they were due t o  t h e  

a r b i t r a r i n e s s  of t h e  ex t rgpola t ion  of t h e  r e f l ec t ance  t o  higher  

energ ies  '17 We the re fo re  s tud ied  the  poss ib l e  sources of such anoma- 

l i e s  i n  t h e  q t i c a l  constants .  The e f f e c t s  of t h e  ex t rapola t ion  of  t he  

re f lec tance ,  t h e  expans ion of t h e  Kramers-Krb'nig in tegra l ,  and f ea tu res  

of t h e  input r e f l ec t ance  values  on the  ca l cu la t ed  o p t i c a l  constants  w i l l  

be discussed i n  t h i s  gppendix. It w i l l  be  shown t h a t  of t hese  tn ree  

p o s s i b i l i t i e s ,  changes i n  the  r e f l ec t ance  values  i n  the  region of t h e  

dkp is  only one which removes t h e  anomalous s t r u c t u r e .  ' 

e x h i b i t  unphysical  dgps a t  3.2 eV. This was not t he  first time t h a t  

A. E f f e c t s  of t h e  Extrapolat ion of t he  Reflectance 

1. Kramers-Krb'nig Calcu la t ion  Formalism 

If t h e  complex normal incidence r e f l e c t i v i t y  io is r = l r l e  

known, then  a l l  t h e  o p t i c a l  p rope r t i e s  can be determined from the  Fresnel  

equat ion and t h e  d e f i n i t i o n s  of  t h e  constants .  Further,  i f  t he  r e f l e c -  

tance R = Irl is known at  a l l  photon energ ies  hV then  t h e  phase of 

t h e  r e f l e c t i v i t y  at energy hVO i s  determined uniquely by the  Kramers- 

Krb'nig transform, 

2 
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Since t h e  r e f l ec t ance  cannot be measured over an i n f i n i t e  photon energy 

range, t h e  d a t a  must be ex t rapola ted  i n  some manner i n  the  unknown 

regions.  

an examination of t h e  uniqueness of t h e  ca l cu la t ed  o p t i c a l  cons tan ts  i n  

t h e  reg ion  of measurement e 

The necess i ty  of us ing  an ex t r apo la t ion  of t h e  d a t a  r equ i r e s  

This ques t ion  has  been s tud ied  by ca l cu la t ions  of 0 us ing  t h e  

r e f l ec t ance  d a t a  of  White and S t r a l e y  f o r  AgC1 a The Kramers-Krgnig 

in t eg ra l ,  Eq. ( A e l ) ,  was performed using t h i s  l abora to ry ' s  computer 

program which was w r i t t e n  i n  Algol 60 by J. Le  Shay based on''' and 

t r a n s l a t e d  i n t o  For t r an  I V  by  D. H. Seib.  For t h i s  work, it was modi- 

f i e d  t o  allow f o r  t h e  c a l c u l a t i o n  t o  be  performed using a high energy 

ex t r apo la t ion  which leads t o  t h e  best agreement between t h e  ca l cu la t ed  

low energy o p t i c a l  cons tan ts  and known values i n  t h i s  region. I n  t hese  

ca l cu la t ions  on AgCl , $he phase s h i f t ,  Q , was f i t  t o  zero  i n  t h e  

t r anspa ren t  reg ion  (0 through 3.0 e V ) .  

se t  of d a t a  and f i t t i n g  c r i t e r i o n ,  t he  resu l t s  repor ted  below should be  

46 

Though ca l cu la t ed  for a s p e c i f i c  

c h a r a c t e r i s t i c  of t h e  c a l c u l a t i o n  as performed us ing  t h i s  labora tory '  s 

computer program. 

The i n t e g r a l  of Eq. (A.1)  is  performed by consider ing t h e  r e f l e c -  

t ance  as p l o t t e d  on a log- log  s c a l e  and s t r a i g h t  l i n e s  drawn between t h e  

d a t a  po in t s .  'Ig The s o l u t i o n  f o r  t h e  con t r ibu t ion  t o  0 from each of 

these  s t r a i g h t  l i n e s  i s  known exac t ly .  'lg 
t o  h igh  energ ies  which is continuous with t h e  l as t  measured value is 

Thus, a natural  ex t r apo la t ion  

(A.2a) 

where Rf 

hVf 
uniquely s p e c i f i e d  by one point ,  

energy hVm 

energy i n  t h e  numerical i n t e g r a t i o n .  Thus, i n  t h e  c a l c u l a t i o n  we are 

i m p l i c i t l y  assuming t h a t  t h e  con t r ibu t ion  t o  0 f o r  energies greater 

than  hvm is zero,  From inspec t ion  of' Eq. (A.1)  it is  seen t h a t  t h i s  

is t h e  r e f l ec t ance  at t h e  h ighes t  energy of measurement, 

Being a s t r a i g h t  l i n e  on a log-log sca le ,  t h i s  ex t r?pola t ion  is e 

Rm ' , ca lcu la t ed  using Eq. (A.Za)  at 

I n  performing t h e  c a l c u l a t i o n  of O(hVo), hVm w i l l  be t h e  largest 
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is  equiva len t  t o  having assumed a constant r e f l e c t i v i t y  from 

i n f i n i t y .  Therefore, t h e  numerical method inherent ly  assumes 
hVm t o  

(Ae2b) 

There a r e  thus  two ad jus t ab le  parameters i n  t h e  choice of such an 

ex t r spo la t ion :  A and hVm It should be  noted t h a t  s ince  t h e  

o p t i c a l  cons tan ts  de:pend on t h e  energy t h a t  s p e c i f i e s  t h e  ex t r apo la t ion  

of t h e  d a t a  

p h y s i c a l  s ign i f i cance .  

parameterg is t o  ob ta in  a f i t  of t h e  ca l cu la t ed  o p t i c a l  cons tan ts  at 

low photon energ ies  t o  known values.  If A i s  chosen t o  s a t i s f y  t h i s  

f i t t i n g  c r i t e r i o n ,  then  it is found t h a t  d i f f e r e n t  choices of 

w i l l  l e a d  t o  d i f f e r e n t  lloptimum'l values fo? A . 

Em , t he  form of t h e  ex t rqpo la t ion  does not have any 
One c r i t e r i o n  t h a t  can be used i n  choosing t h e  

hVm 

To ob ta in  a more accurate knowledge of t h e  q p t i c a l  cons tan ts  i n  t he  

h igh  energy r eg ion  of measurement, a second c r i t e r i o n  must be u s 4  i n  

choosing t h e  ex t r apo la t ion .  If t h e  measured R is decreasing a t  high 

energies,  a reasonable choice is  t o  r e q u i r e  t h a t  t h e  s lope  of the r e f l e c -  

tance  be continuous at hV . Using t h i s  c r i t e r i o n ,  t h e  e r r o r  i n  t h e  

o p t i c a l  &ons tan ts  can be es t imated  f o r  a given slope d i scon t inu i ty  

(see Eqs. ( A . 3 )  and ( A . 4 )  below). 

A s  can be seen from Eq. (A.2a),  t h e  s lope  of t h e  ex t r apo la t ion  

f 
R 

a t  hYf depends only on A Thus, us ing  our  second c r i t e r i o n  of R 

s lope  cont inui ty ,  A can be chosen unambiguously. Then hVm can be  

va r i ed  t o  s a t i s f y  t h e  f i t t i n g  c r i t e r i o n  at low photon energ ies .  

2 .  Results 

It is  found t h a t  v a r i a t i o n  of e i t h e r  of t hese  q u a n t i t i e s  (A or 

hVm) 
not t h e  p o s i t i o n  of o p t i c a l  cons tan t  s t r u c t u r e  i n  t h e  region of measure- 

ment, Thus, t h e  unphysical  dips  i n  t he  AgCl o p t i c a l  cons tan ts  were 

probably not due t o  t h e  ex t r zpo la t ion  of t h e  r e f l ec t ance  as Morrison 

specula ted  e "' I n  f a c t ,  i f  only A is ad jus ted  t o  f i t  low energy 

o p t i c a l  data, then  t h e  absorption c o e f f i c i e n t  a is t h e  same f o r  a l l  

while t h e  o the r  is he ld  f i x e d  a f f e c t s  t h e  magnitude uniformly but 
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pairs of  hvm and corresponding "optimwn'' A at photon energ ies  below 

15 eV if hVm i s  reasonably (a t  l e a s t  50$) l a r g e r  than  t h e  hVf of 
46 2 1 . 1  e V  f o r  t h e  AgCl d a t a  used. Between 1.5 and 2 1 . 1  eV t h e  varia- 

t i o n  i n  cx was less than  5$ even a t  hVf e This is cons i s t en t  with 

t h e  a n a l y t i c a l  f i nd ings  by Nilsson and Munkby. 

t h a t  t h e  e r r o r  i n  a a t  an energy hv is  given approximately by 
I n  fact, it is  found 12 0 

where &Xf 

at hVf 

of t h e  r e f l ec t ance  a t  , by us ing  t h e  second c r i t e r i o n  

descr ibed  above. It is found t h a t  f o r  a l l  slope d i s c o n t i n u i t i e s  

is t h e  maximum e r r o r  of t h i s  o p t i c a l  constant  which occurs 
The e r r o r  can be r e l a t e d  t o  t h e  d i scon t inu i ty  i n  t h e  s lope  

hVf , AS 

ACXf is now t h e  devia t ion  of a at hV from the  where t h e  e r r o r  

corresponding value calculated wi th  r e f l ec t ance  having a continuous 

s lope  a t  hVf . 
f 

We can conclude t h a t  except f o r  energ ies  near  t h e  end of t h e  

measurement range, t h e  o p t i c a l  cons tan ts  ca l cu la t ed  by a Kramers-Krb'nig 

ana lys i s  of a set  of r e f l ec t ance  data are i n s e n s i t i v e  t o  t h e  extra- 
p o l a t i o n  of  t h e  data t o  high photon energ ies  when t h e  ex t r apo la t ion  is 

chosen t o  make a few low energy ca l cu la t ed  o p t i c a l  cons tan ts  agree wi th  

known va lues  ThFs very s i g n i f i c a n t  conclusion is  f u r t h e r  subs t an t i a t ed  

by  ca l cu la t ions  of the  o p t i c a l  cons tan ts  of amoorphous G e  by 

T. M. Donovan us ing  t h i s  computer program, By f i t t i n g  o t o  zero 

over t h e  very narrow t r anspa ren t  region, t h e  r e s u l t i n g  value f o r  t h e  

index of  r e f r a c t i o n  a t  zero frequency was wel l  w i th in  one percent  of  t h e  

measured value fo r  amorphous Ge . I n  addi t ion,  t he  ca l cu la t ed  cZ at 

t h e  absorpt ion edge f i t  t he  measured values  q u i t e  wel l .  
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B e  E f f e c t s  of t h e  Expansion of t h e  Kramers-Krgnig I n t e g r a l  

The Kramers-Kr6ni.g r e l a t i o n  is computed numerically by expanding 

t h e  i n t e g r a l  of Eq. ( A . l )  about 

by-point.  
Vo and ca l cu la t ing  i t s  value, po in t -  

Thus, t h e  ca l cu la t ed  o p t i c a l  constants  may depend on how the  

expansion is made. 

Olechna, and Story''' was followed. 

I n  our computer program, the  procedure of Kreiger, 

White used a d i f f e r e n t  expansion 

i n  h i s  ca lcu la t ions47  so  it is important t o  determine i f  t h i s  caused 

t h e  anomalies i n  t h e  o p t i c a l  constants .  Usicg t h e  i d e n t i c a l  input d a t a  

as White,50 it was found t h a t  s t r u c t u r e  i n  t h e  o p t i c a l  constants  d id  

not d i f f e r  s i g n i f i c a n t l y  i n  p o s i t i o n  or magnitude f o r  the  two computa- 

t i o n s  including t h e  unphysical d tps  i n  a , K , and c2 . It would 

thus  seem t h a t  t hese  anomalies a r e  not p e c u l i a r i t i e s  of t he  ca l cu la t ion .  

C. E f f e c t s  of t h e  Input Reflectance Values 

Because of t h e  r e l i a b i l i t y  of t he  o p t i c a l  constants  ca lcu la ted  i n  

t h e  manner descr ibed above, t h e  cause for t h e  anomalous o p t i c a l  constant  

s t r u c t u r e  i n  AgCl (and o ther  solids117) is probably not r e l a t e d  t o  the  

use of t h e  Kramers-Krgnig transform. One is  thus  compelled t o  examine 

t h e  r e f l ec t ance  d a t a  i n  the  energy range corresponding t o  the  unphysical 

c a l c u l a t e d  s t r u c t u r e ,  This is done for White and S t r a l e y ' s  d a t a  i n  

Fig. All. hYf = 2 1 . 1  eV) 

is  presented  by  t h e  curve except i n  t he  region from 3.2 through 4.3 eV 

where t h e  po in t s  and not t he  curve a re  t h e i r  da ta .  Above 2 1 . 1  eV, t h e  

ex t raTola t ion  [Eq. (A.2a)I is shown which was chosen t o  f i t  t h e  calcu- 

l a t e d  0 t o  zero from 0 through 3.0 eV. A c lose  inspect ion of White 

and S t r a l e y ' s  d a t a  shown i n  t h e  f i g u r e  r evea l s  t h a t  t he  r e f l e c t i v i t y  

has a d i scon t inu i ty  i n  slope at 3.2 eV and through 4,3 eV has values 

g r e a t e r  than  t h e  underlying smooth "envelope" ( i .e ., s o l i d  curve) by 

up t o  ll$* 

46 

I n  t h i s  f igure ,  t h e i r  e n t i r e  d a t a  (through 

Reports of e a r l i e r  measurements of t h e  r e f l e ~ t i v i t ? ~  and 

o p t i c a l  absorption54951952 of  AgCl show smooth o p t i c a l  constants  i n  

t h i s  energy region. "Smoothing" t h e  r e f l ec t ance  i n  accordance with 

these  e a r l i e r  measurements i n  t h i s  region, as shown by the  s o l i d  curve, 

r e s u l t e d  i n  t h e  changes i n  ca l cu la t ed  o p t i c a l  constants  shown i n  Fig. A.2 .  
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FIGURE A.1 .  The s p e c t r a l  d i s t r i b u t i o n  of t h e  r e f l ec t ance  
of AgCl at 2S0K from.the work of  White and 
S t r a l e y  ( re ference  46) e I n  t h e  region from 3.2 
through 4.3 eV t h e  p o i n t s  and not t h e  curve a re  
t h e i r  da t a .  
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FIGURF: A.2 ( a ) .  Comparison of t he  s p e c t r a l ,  d i s t r i b u t i o n s  of 
t h e  imaginary p a r t  of t h e  d i e l e c t r i c  constant 
of AgCl a t  2 9 5 O K  ca l cu la t ed  from t h e  r e -  
f l e c t a n c e  of White and S t r a l e y  ( re ference  46) 
(- - -) and the  same values bu t  smoothed 
from 3.2 through 4.3 eV (-) e 



--- WHITE ANb STRALEY R 
W B S R SMOOTHED 

0 4.0 8 .O 12.0 16.0 20.0 24.0 
PHOTON ENERGY, hu ( e V )  

FIGURE A.2 (b) . Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of  
t h e  absorp t ion  c o e f f i c i e n t  of A g C l  a t  295'K 
ca lcu la t ed  from t h e  r e f l ec t ance  o f  White and 
S t r a l e y  ( re ference  46) (- - -) and the  same 
values  but smoothed from 3.2 through 4.3 eV 
(--> * 

The ex t r apo la t ion  of t h e  r e f l ec t ance  was chosen t o  s a t i s f y  the  same 

c r i t e r i o n  f o r  bo th  sets of input values. A s  is r e a d i l y  evident,  t h e  

o p t i c a l  cons tan ts  with t h e  White and S t r a l e y  r e f l ec t ance  smoothed 

( i a e e ,  "W&S R smoothed"), have t h e  same s t r u c t u r e  as those ca lcu la ted  

wi th  t h e  o r i g i n a l  data except f o r  t h e  complete absence of t h e  unphysical 

d ips  at 3.2 eV. Except f o r  t h e  dips ,  t h e  magnitude of t hese  two s e t s  of 

o p t i c a l  cons tan ts  are i n  genera l  q u i t e  similclr, d i f f e r i n g  by l e s s  than  

104 f o r  energies  above 3 + 2  eV. 

This is a q u i t e  s i g n i f i c a n t  conclusion s ince  it implies t h a t  t h e  

c a l c u l a t e d  o p t i c a l  cons tan ts  which e x h i b i t  an unphysical d ip  near t h e  

edge 46f117 a re  qui te  re l iable  a t  energ ies  o the r  than these  anomalies. 

Therefore, t h e  dips  can be neglected f o r  a l l  p r a c t i c a l  purposes. Further, 

because of t h e  r e l i a b i l i t y  of  t he  o p t i c a l  cons tan ts  ca lcu la ted  i n  t h i s  



manner, t h e  Kramers-Krb'nig t ransform i s  a u s e f u l  check of t h e  measured 

r e f l e c t a n c e  da t a .  I n  t h e  case of A g C l  d i scussed  above, t h i s  ana lys i s  

revea led  an e r r o r  i n  t h e  experimental d a t a  (see Fig. A.1). 
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APPENDIX Be PHOTOEMISSION FROM VACUUM HEAT-CLEANED 

A s  was discussed i n  Chapter IV, 99.99$ pure Ag and Pt were 

used as substrate materials f o r  t h e  s i l v e r  ha l ide  t h i n  f i l m s .  These 

s o f t  metals were pressed  t o  work-harden them s o  they  could be polished 

to a mi r ro r - l i ke  f i n i s h .  
-10 i n  t h e  vacuum chamber u n t i l  t h e  pressure  was around 1 X 10 Torr. 

The photoemission from such specimens is  be l i eved  t o  b e  some of t h e  

b e s t  measured t o  date ,  The resu l t s  as presented here, without theo- 

r e t i c a l  analysis ,  are f o r  future  re ference .  

They were then  heat-cleaned a t  about 425OC 

The EDCs f o r  a t y p i c a l  Ag s u b s t r a t e  i s  presented from hV = 7 - 8  e V  

The sample des igna t ion  r e f e r s  t o  t h e  s i l v e r  through 11.8 e V  i n  Fig.  B.1. 

ha l ide  f i l m  which was deposi ted onto its surface. This sample shows 

some of the  sha rpes t  s t ructure  on t h e  lead ing  p a r t  of t h e  curves measured 

t o  date. 

Spicer,  12' Krolikowski, ' and Walden. lZ3 

emission from o the r  samples is shown i n  Fig.  B.2. Since these  curves 

a r e  ind iv idua l ly  normalized, it can be seen t h a t  t he  major d i f fe rence  

between the  AgBr-11-E sample of Fig. B . l  and AgC1-I -A substrate is 

t h e  much lower th re sho ld  i n  t h e  l a t e r  case;  however, t h e  h igher  energy 

s t r u c t u r e  is completely lost f o r  t h i s  sample. This is t y p i c a l  of t h e  

Ag EDCs measured i n  previous s t u d i e s .  The information which is gained 

concerning t h e  s t ronge r  4d EDC s t r u c t u r e  has been obtained i n  previous 

c e s i a t e d  s tud ie s  (e.g., Walden's work 123) and thus  r e a l l y  o f f e r s  nothing 

p a r t i c u l a r l y  new. 

d a t a  is t h a t  t h e  

n a l  condi t ion  by evaporat ing t h e  s i l v e r  h a l i d e  film o f f  t h e  subs t r a t e  

once measurements of i t s  p rope r t i e s  have been completed. 

eV, t h e r e  is v i r t u a l l y  no change i n  t h e  EDC from t h e  newly cleaned 

Ag(AgBr-11-A) t o  i t s  cleaned condi t ion  fol lowing the  s tudy of four  

d i f f e r e n t  AgBr samples (AgBr-11-E). It is  important t o  note t h a t  

They compare q u i t e  favorably  t o  t h e  work o f  Berglund and 

A comparison t o  t h e  photo- 

One o the r  i n t e r e s t i n g  t h i n g  t h a t  can be seen i n  t h i s  

Ag s u b s t r a t e  can be heat-cleaned t o  almost i t s  o r i g i -  

A t  hV = 10*2 
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FIGURE B . l ( a )  e Comparison of energy d i s t r i b u t i o n s  normalized t o  
absolu te  quantum y i e l d  ( p e r  absorbed photon) f o r  e l ec t rons  photo- 
emit ted from Ag a t  295'K f o r  photon energ ies  of 7.9 through 9.4 eV. 
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FIGLRE B . l ( b )  e Comparison of energy d i s t r i b u t i o n s  normalized t o  
absolute  quantum y i e l d  (per  absorbed photon) for e lec t rons  photo- 
emit ted from Ag at 2s°K for photon energ ies  of 9.6 through 10.4 eV. 
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FIGURE B . l ( c )  e Comparison of energy d i s t r i b u t i o n s  normalized t o  
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t h e  EDCs of Figs .  B . 1  and B.2 a re  normalized r e l a t i v e  t o  t h e  y i e l d  

cor rec ted  f o r  t h e  Ag re f l ec t ance  using the  d a t a  of Ehrenreich and 

Philipp.124 This y i e l d  i s  presented  f o r  t h r e e  samples i n  Fig.  B . 3 .  

- 

I I I I I I I I 

I I I I I I I I I 

ii i 

295" K 

A g B r - I - A  

-- Ag &-=-A 
-.- AgC I - I I - A  

PHOTON ENERGY, h v  (eV) 

FIGURE B . 3 .  
e l ec t rons  photoemitted p e r  absorbed :photon from t h ree  A g  samples 
a t  2 B ° K e  

Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of the  y i e ld  of 
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No measurements of Ag photoemission below room temperature were 

taken.  

The EDCs a t  t h r e e  photon energies  f o r  t h e  b e s t  sarrple of P t  are 

shown i n  Fig. B.4.  Pt was much more d i f f i c u l t  t o  reproducibly hea t -  
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Pt 
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ELECTRON ENERGY, E (eV) 

FIGURE B .be Com'parison of energy d i s t r i b u t i o n s  normalized to absolute  
quantum y i e l d  (pe r  absorbed photon) f o r  e l ec t rons  photoemitted from 
Pt a t  2S0K f o r  photon energ ies  of 8.4 through 11,k eV. 

c lean  than  was Ag e Following a study of a AgCl or AgI sample, 

t h e  photoemission of t h e  cleaned Pt exhib i ted  a higher  th reshold  and 

l e s s  wel l -def ined s t r u c t u r e ,  

c leaning  t h e  Pt  t hese  exce l l en t  curves were not reproducible  i n  a l l  

t h e i r  de ta i l s .  These EDCs do e x h i b i t  much more s t r u c t u r a l  d e t a i l  than  

previous s t u d i e s  of heat-cleaned and E-gun evzporated Pt by Yu. 

Even fol lowing repol i sh ing  and reheat-  
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The EDCs of Fig. B.4 a r e  normalized r e l a t i v e  t o  the  absorbed photon flux. 

The y i e l d  was cor rec ted  f o r  re f lec tance  using t h e  da t a  of G. Hass which 

was presented i n  Yu's t hes i s . l o3  This y i e l d  is presented i n  Fig. B.5. 

1- I I 

P t  

/ 

4.0 6.0 8.0 10.8 12.0 
I 0- 

RGY, hv(eV) 

FIGURE B d 5 .  The s p e c t r a l  d i s t r i b u t i o n  of the  y i e l d  of  e l ec t rons  
photoemitted :per absorbed photon from F% a t  295'K. 
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APPENDIX Ca CALIBRATION OF STANDARDS FOR T€IE MEASURFSIENT 

OF ABSOLUTE QUANTUM YIELD 

A re l iable  and accura te  knowledge of  t h e  absolute  y i e l d  of photo- 

emi t ted  e l ec t rons  is important f o r  i n t e r p r e t i n g  t h e  resu l t s  of t he  

-photoemission experiment, Since 

I 
Y = g(1 - R) = - 9 

qeF 

t h e  y i e l d  p e r  inc ident  photon, Y , is determined if the  incident  

photon f lux,  F , can be measured, s ince  t h e  photocurrent, I is 

r e a d i l y  measurable. If one has a c a l i b r a t e d  photodiode, then  t h e  mea- 

surement of i t s  photocurrent  g ives  t h e  inc ident  photon flux d i r e c t l y  by 

Eqe  ( C . 1 ) .  Therefore, t h e  absolu te  quantum y i e l d  of t h e  s o l i d  under 

s tudy  is determined by comparing the  t o t a l  photoemitted cur ren t  from 

t h e  sample with t h e  photoresponse to t he  same incident  photon flux of  

a c a l i b r a t e d  photodiode s tandard.  It is c l e a r  t h a t  t h i s  measurement 

i s  only as accura te  as the  c a l i b r a t i o n  of t h e  quantum y i e l d  of t he  

re ference  c e l l .  The re ference  tubes  used i n  our labora tory  a r e  made 

a t  Stanford of a C s  Sb photocathode with a LiF window using the  

cons t ruc t ion  and design developed by  A. J. Blodget t .  ’‘5 ~s part of our  

study, new procedures were developed to c a l i b r a t e  t h e  r e l a t i v e  s p e c t r a l  

response and absolu te  response of t hese  s tandards t o  a much g rea t e r  

accuracy and r e p r o d u c i b i l i t y  than  had been poss ib le  before .  

reasons t h i s  was undertaken was because it became apparent e a r l y  i n  

these  s tud ie s  t h a t  t h e  responses of t h e  tubes used f o r  t h i s  purpose 

had changed s ince  they  were o r i g i n a l l y  calibrated by R e  Y. Koyama over 

two years  before .  

3 

One of t h e  

12 6 
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A. Measurement Techniques 

As  a first s t e p  i n  the  c a l i b r a t i o n  procedure, t h e  r e l a t i v e  response 

is determined by measuring t h e  photoresponse of t h e  C s  Sb tube r e l a t i v e  

t o  a W sens i t i ve ,  narrow emission band phosphor, sodium s a l i c y l a t e  (SS), 

which has  a known photon energy conversion e f f i c i ency .  Koyama inves t i -  

ga ted  t h e  SS quantum e f f i c i ency  by comparing t h e  response of t h e  C s  Sb 

c e l l  t o  t h a t  of an unca l ibra ted  W thermopile.  

a f l a t  s p e c t r a l  response, it serves  as a check of t he  s p e c t r a l  dependence 

of t h e  SS quantum e f f i c i ency .  Koyama fcund t h a t  t he  e f f i c i e n c y  can be 

taken  as constant  from 3.7 through l o a >  eV bu t  f o r  photon energies  

g r e a t e r  than  10.5 eV, t he  quantum e f f i c i e n c y  decreases .  This genera l  

behavior  of t h e  quantum e f f i c i e n c y  o f  SS agrees  wi th  many repor ted  mea- 

surement s .  127-129 
s tancy  is presented  i n  Table C . l  from unpublished d a t a  of Koyama. 

TABLE C.1 .  

3 

3 
Since t h i s  device has 12 6 

The depar ture  of t h e  quantum e f f i c i e n c y  from con- 
130 

S p e c t r a l  d i s t r i b u t i o n  of t he  r e l a t i v e  quantum 
e f f i c i e n c y  of sodium s a l i c y l a t e  from unpublished 
work of Koyama ( re ference  130). 

SS RELATIVE 
QUANTUM EFFICIENCY 

(KOYAMA) 

3.7 -.+ 10.5 1.00 

10.6 0.97 
10.7 0.94 
10.9 0.93 
10.9 0 .go 
11.0 0.99 
11.1 0 .E39 
11.2 0 .99 
11.3 0.91 
11.4 0.91 
11 -5 0 -96 
1 ~ 6  0 .E32 

11.7 0.71 
11 e 9  0 e90 
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The C s  Sb tube response had been measured r e l a t i v e  to t h a t  of  

SS i n  t h e  manner depic ted  i n  p a r t  ( a )  of Fig.  C.1 p r i o r  t o  t h i s  work 

(see reference 126). 

motion so it can be moved i n  and out of  t h e  l i g h t  beam. 

response of t h e  c e l l  has been measured, it is  removed from the  beam and 

the  sme incident  photon f l u x  is inc ident  on t h e  phospher. It emits 

r a d i a t i o n  a t  a f i x e d  energy f o r  a l l  inc ident  wavelengths (i.e.9 it is a 

photon energy conve r t e r ) .  

important s ince  t h i s  measuring device i s  always de t ec t ing  t h e  same energy 

r a d i a t i o n  f o r  a l l  c a l i b r a t i n g  frequencies .  I n  t h i s  way, the  r e l a t i v e  

response i s  measured if  the  quantum e f f i c i e n c y  of t he  SS is known. The 

use of a photomul t ip l ie r  is a s e r i o u s  def ic iency  i n  t h i s  measurement 

procedure. 

cence i n t e n s i t y  has a much higher  s e n s i t i v i t y  than  the  C s  Sb photo- 

diode, it is necessary to place an ape r tu re  i n  f r o n t  of t h e  photomulti- 

p l i e r  t o  avoid s a t u r a t i o n ,  I n  a s e r i e s  of measurements using t h i s  tech-  

nique, t h e r e  was a gene ra l  l a c k  of r e p r o d u c i b i l i t y  among t h e  data s e t s .  

It is be l ieved  t h a t  t h i s  is due to t h e  f a c t  t h a t  using t h i s  method, only 

t h e  f luorescence induced by a small po r t ion  of t h e  photon flux incident  

on t h e  C s  Sb tube is measured by  t h e  photomult ipl ier .  Thus, any inhomo- 

g e n e i t i e s  i n  t h e  l i g h t  beam cause e r r o r s  i n  t h e  measurements. 

3 

The c e l l  be ing  c a l i b r a t e d  is  mounted on a l i n e a r  

After t h e  photo- 

Thus, t h e  y i e l d  of t h e  photomult ipl ier  i s  not 

Since t h e  photomul t ip l ie r  used t o  measure phosphor f luores-  

3 

3 

To ob ta in  more r e l i a b l e  data, a method has been developed wherein 

t h e  C s  Sb tube be ing  c a l i b r a t e d  is a l s o  used to measure the  phosphor 

f luorescence as shown schematical ly  i n  p a r t  (b) of Fig. C.1. This is 

accomplished by having t h e  SS mounted on t h e  l i n e a r  motion and moving 

it i n  and out of t h e  l i g h t  beam j u s t  i n  f r o n t  of t h e  C s  Sb photodiode. 

The need f o r  a photomul t ip l ie r  i s  thereby eliminated, and t h e  same photon 

flux is inc ident  on t h e  photodiode be ing  c a l i b r a t e d  and the  region of t h e  

c a l i b r a t i n g  phosphor be ing  monitored, 

t h e  monochromator is p i c tu red  i n  Fig.  C.2 with t h e  C s  Sb tube and SS 

mounted on l i n e a r  motions. 

t h e  SS i n  f ron t  of  t h e  tube while i n  p a r t  (b)?  t h e  closeup shows the  SS 

withdrawn and t h e  photoresponse of t h e  tube being ca l ib ra t ed  can be 

measured, Since t h e  C s  Sb photodiode is such a broadband de tec to r  

3 

3 

The a c t u a l  r i n g  which was used on 

3 
I n  p a r t  (a )  t h e  e n t i r e  r i n g  is shown with 

3 
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\ I 

FIGURE C.l(a) and ( b ) .  Schematic diagram of  t h e  zpparatus used t o  
c a l i b r a t e  t he  r e l a t i v e  response of t h e  C s  Sb c e l l  by u t i l i z i n g  a 
sodium s a l i c y l a t e  phospher i n  (a)  previous work and (b)  t h e  present  
work 

3 

265 



FIGURE C.2 (a) and (b) . 
Photograph of the  Fpparatus used t o  c a l i b r a t e  t he  r e l a t i v e  
response of the  C s  Sb standard showing the  sodium sa l i cy -  
l a t e  phospher i n  t h e  two pos i t ions  used i n  making t h e  
measurements e 

3 

266 



FIGURE C e 2 ( b )  
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( see  Fig.  C.3  below), precaut ions must be taken to insure  t h a t  only t h e  

I .8 

PRESENT WORK, 9/69 --- NOS, 4/69 
--- KOYAMA ~ I I /66 

I 

PHOTON ENERGY, hv ( e V )  

P 

3 
0 

0.01 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

FIGURE C . 3 9  Comparison of t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  y i e l d  
of  e l e c t r o n s  photoemitted p e r  inc ident  photon from 
t h e  C s  Sb c e l l  F-7 from t h e  present  work and t h e  
works 03 Canfield and Madden at t h e  NBS ( re ference  132) 
(- - -> and Koyama (reference 126) (- - -). The absolute  
c a l i b r a t i o n  po in t  determined us ing  a NO c e l l  i s  a l s o  
shown. 

phosphor f luo rescen t  emission is being measured when it is placed i n  

f r o n t  of t h e  tube ,  Therefore, t h e  SS is sprayed d i r e c t l y  onto a 

narrow bandpass o p t i c a l  f i l t e r  t o  e l imina te  any W r a d i a t i o n  which may 

be t r ansmi t t ed  through t h e  phosphor from being  de tec ted  by t h e  

tube.  

chosen to have a m a x i m u m  t ransmission near the  approximately 2.9 eV 

12 6 

C s  Sb 3 
This f i l t e r  (Corning Glass F i l t e r  No. 3-60) was9 of course9 



f luorescence  m a x i m u m  of SS. It should be noted t h a t  t h e  phosphor 

f luorescence  occurs i n  t h e  low photon energy cu to f f  region of t h e  photo- 

diode (see Fig.  C . 3 ) .  Though t h i s  emission spectrum has a sharp high 
energy cu tof f ,  it has a r a t h e r  long t a i l  at low photon energies .  131. 

The o p t i c a l  f i l t e r  t hus  a l s o  increases  t h e  r e l i a b i l i t y  of t h e  measure- 

ment by confining t h e  measured f luo rescen t  r a d i a t i o n  t o  a narrow energy 

reg ion  over which t h e  tube response does not  change g rea t ly .  This tech-  

nique has  t h e  a d d i t i o n a l  advantage t h a t  only one ammeter i s  necessary.  

Errors due to meter c a l i b r a t i o n  d i f f e rences  i n  t h e  two-meter technique 

used previously are thereby el imjnated.  When t h e  s p e c t r a l  dependence 

of t h e  SS quantum e f f i c i e n c y  is taken  i n t o  account (see Table C . l ) ,  t h e  

r e l a t ive  s p e c t r a l  response of t h e  s tandard c e l l  w i l l  have been measured. 

The absolu te  quantum y i e l d  of t he  UV standard had been determined 

i n  t h e  p a s t  by comparing t h e  response of t h e  Cs,Sb t o  t h a t  of a c a l i -  

This is somewhat 12 6' b r a t e d  v i s i b l e  thermopile from 4.0 t o  5.0 eV. 

u n s a t i s f a c t o r y  s ince  it is used to s e t  t h e  absolu te  response a l l  t h e  way 

up to 11.3 eV. 

W d i r e c t l y ,  t h e  C s  Sb photodiode was measured r e l a t i v e  t o  a c a i i -  

b r a t e d  NO ion chamber at 10.2 eV. This c a l i b r a t e d  gas c e l l  was purchased 

from Mel'par, Inc .  of Falls Church, Vi rg in ia .  This then  s e t  t h e  absolute  

s c a l e  f o r  t he  re la t ive response determined by comparison with SS d i s -  

cussed above e 

I n  o rde r  t o  determine t h e  absolu te  quantum y i e l d  i n  t h e  

3 

B. Resul t s  

A series of measurements were made using SS f i lms  ranging i n  
2 " thickness"  from 2.4 t o  6.6 mg/cm . 

c a l  i n  magnitude as w e l l  as r e l a t i v e  structure f o r  a l l  t h e  films. It 

should be noted t h a t  t h e  r e l a t i v e  i n t e n s i t y  of t h e  f luorescence response 

is independent of SS th ickness  f o r  f i lms  1.5 to at l e a s t  4.0 mg/cm . 
The average of t hese  measurements were ad jus ted  t o  the  absolute  value 

determined by comparison t o  t h e  NO c e l l .  The r e s u l t i n g  absolute  c a l i -  

b r a t i o n  of t he  C s  Sb c e l l  number F-7 i s  presented i n  Fig. C . 3 .  This 

C s  Sb tube was a l s o  measured r e l a t i v e  to another C s  Sb photodiode 

whose photoresponse was subsequently compared to a c a l i b r a t e d  W thermopile 

The r e s u l t s  were v i r t u a l l y  i d e n t i -  

2 131 

3 
3 3 



by Canfield and Madden of t h e  Nat iona l  Bureau of Standards.  132 
r e s u l t h g  values  f o r  our tube are a l s o  p l o t t e d  on Fig. (2.3. 
ment between t h e s e  two independent sets of measurements is remarkably 

The 

The agree- 

good. The near ly  i d e n t i c a l  va lues  above 10-5 eV a re  evidence of how 

well  t h e  r e l a t i v e  SS quantum e f f i c i e n c y  had been determined by Koyama 

( i . ee ,  t h e  va lues  of Table (2.1). 
due t o  inaccuracy i n  t h e  NBS d a t a  caused by  t h e  low s e n s i t i v i t y  of t h e  

thermopile t o  r a d i a t i o n  at such low energ ies .  

probably c h a r a c t e r i s t i c  of t h e  C s  Sb c e l l  and not t h e  SS s ince  it was 

reproduced by measurements using a v i s i b l e  thermopile e 

t 4% from 3.7 through 11.6 eV. The absolu te  y i e l d  of F-7 a t  10.2 e V  

determined from t h e  NO c e l l  was 4% higher  than  t h e  value measured a t  

t h e  NBS. A s  another  check, t h e  measurement program discussed above was 

performed on a second C s  Sb tube.  When t h e  F-7 c e l l  was compared t o  

it, t h e  r e s u l t i n g  y i e l d  was 4$ higher  than  t h e  value determined by 

comparison wi th  t h e  NO c e l l .  Since t h e  r e l a t i v e  response using the  

newly developed procedures was reproducible  t o  a higher  accuracy than  

t h i s ,  t h e  values from hv = 3.7 eV through 11.6 eV are be l ieved  t o  be 

wi th in  k 4$e Since t h e  c e l l  was r a r e l y  used below t h i s  energy, it was 

not ex tens ive ly  c a l i b r a t e d  a t  the  lower ene rz i e s .  The s p e c t r a l  depen- 

dence of t he  F-7 y i e l d  determined by Seib and Eden i n  1966, 
f i t t e d  onto t h e  newly determined y i e l d  from 3.7 through 5.0 eVo 

The dev ia t ion  below 6.0 eV is probably 

The d i p  at  4.7 e V  is 

12 6 3 

The absolute  c a l i b r a t i o n  of t h e  c e l l  is be l ieved  t o  be wi th in  

3 

was 12 6 

A rough 

check with t h e  c a l i b r a t e d  S-1 v i s i b l e  standard133 showed these  values  t o  

be reasonable  bu t  an es t imate  of t h e  o v e r a l l  accuracy i n  t h i s  energy 

range could not be made. 

f o r  future  re ference .  

This r e s u l t i n g  y i e l d  is t abu la t ed  i n  Table C.2 

The o r i g i n a l  c a l i b r a t i o n  of t h i s  c e l l  by Koyama is a l so  shown i n  

Fig.  C.3 f o r  comparison. 

about 29$ from Koyama's va lues  of 11/66. 
b r a t i o n  was accurate ,  t h i s  would ind ica t e  a f a i r l y  uniform drop i n  

s e n s i t i v i t y  of t h e  tube by t h i s  amount over a per iod of a l i t t l e  less 

than  t h r e e  years ,  This decrease i s  probably due t o  a l o s s  i n  trans- 

mission of t h e  LiF window on t h e  C s  Sb tube .  

Our new c a l i b r a t i o n  of 9/69 is  reduced by 

If t h e  e a r l i e r  absolute  c a l i -  

3 
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TABLE C.2 .  S p e c t r a l  d i s t r i b u t i o n  of t h e  quantum y i e l d  (per  inc ident  
photon) of t h e  C s  Sb 
3.7 < hV 11.6 ev? 

standard F-7 t o  t 45 f o r  
- - 

Y 
hV 
(4 ( ) 
2 e2 

2 e3 
2.4 
2 05 
2.6 
2 07 
2 .3 
2 -9  
3 00 
3 *1 
3.2 
3 03 
3.4 
3 05 
3 06 
3.7 

3 09 
4 .O 

4.2 
4 83 
4.4 
4.5 

0 * 0109 
0.0200 

0.0310 

0 00393 
0.0430 
0.0574 
o .0668 
0.0749 
0 e 0840 
0.0927 
0 . lo1 
0 .lo3 
0.114 
0.122 

0.129 

0 136 
0.139 
0,137 
0 0135 
0.130 
0 a 2 6  
0 e 122 

0.120 

0.133 

Y 

( inc .  ph. 1 hV 
: ev) 

4,6 o. i ig  
4.7 0.113 
4 e 3  0.120 

4.9 0.124 
5 e 0  0.127 
5.1 0.131 
5e2 0,139 
5.3 0.143 
5 = 4  0.153 
5.5 0.167 

5.7 0.131 
523 0.190 
5.9 0.199 
6.0 0.203 
6.1 0.211 

6.2 0.216 
6.3 0.219 
6.4 0 , 2 2 1  

6*5 0 ,222  

6.6 0,224 
6.7 0.225 
6.3 0.224 
6.9 0 , 2 2 1  

5.6 0.173 

Y 
hV : 4 .) 
7.0 0.213 

7.1 0.214 
7.2- 0.21.0 

7.4 0.1g3 
7.5 0.192 
7.6 0.133 
7.7 0.183 
7.8 0.136 
7.9 0.133 
3.0 0.19g 
3.1 0.191 
3 e 2  0.139 
3.3 0.132 

7.3 0.204 

3.4 0.173 
8.5 0.172 
3.6 0.162 
3.7 0.154 
3 e 3  0,148 
8.9 0,141 
9.0 0.137 
9.1 0.134 
9.2 0.134 
9.3 0,137 

Y 
hV 

(eV) ( inc.  ph. 

9 a4 
9 *5 
9 -6 
9.7 
9a3 
9.9 

10 .o 
10.1 

10.2 

10.3- 

10 -5 
10.6 
10.7 
10 .3 
10.9 
11 .o 
11.1 

11 e 2  

10.4 

11.3 

11 *5 
11.6 
11.7 
11 e 3  

11.4 

0 140 
0 2 4 1  
0.139 
0.137 
0 135 
0.130 
0.123 
0 It 116 
0.111 

0.105 
0 .loo 

0.0975 

0 e 0916 

0.0870 
0 e 0854 
0.0300 

0.0933 

0.0903 

0 -0771. 
0 e 0746 
o .0711 
0.0660 
0.0603 
0.0474 
0.0334 



This work allows us t o  measure t h e  absolu te  quantum y i e l d  of t h e  

s o l i d s  under s tudy  i n  our photoemission experiments w i t h  more accuracy 

and r e l i a b i l i t y  t h a n  was previous ly  poss ib l e .  It a l s o  provides  a d i r e c t  

measure of t h e  absolu te  quantum e f f i c i e n c y  of  sodium s a l i c y l a t e .  Once 

the  r e l a t i v e  response of t h e  tube has  been determined, t h i s  new method 

allows t h e  photoresponse of  t h e  c e l l  t o  be compared wi th  and without 

t h e  SS i n  f r o n t  ( see  Fig. C . l b ) ;  t h e  magnitude of t h e  e f f i c i e n c y  is  

then  r e a d i l y  determined when t h e  s p e c t r a l  d i s t r i b u t i o n s  of t h e  SS 

f luorescence and f i l t e r  t ransmiss ion  are co r rec t ed  for. 



APPENDIX D.  ADDITIONAL AgBr AND A g C l  DATA 

A s  noted i n  Chapter V I I I ,  a l l  of t h e  photoemission d a t a  f o r  AgI , 
and, except near threshold,  a l l  of t he  d a t a  f o r  AgBr and AgCl has 

been presented i n  t h e  rnair, t ex t  according t o  t h e  c h a r a c t e r i s t i c s  of t h e  

e l e c t r o n i c  s t a t e s  which could be determined from it. 
and AgCl threshold  d a t a  is presented i n  Figs.  D.l and D.2, respec t ive ly .  

Since it does not conta in  any c h a r a c t e r i s t i c s  which a r e  not seen a t  

h igher  energies ,  it was not included i n  t h e  t e x t .  The pos i t ions  of these  

peaks were included i n  t h e  s t r u c t u r e  p lo t s ,  however. This data is pre- 

sented here  f o r  completeness and f u t u r e  re ference .  

This omitted AgBr 

The room temperature r e s u l t s  f o r  t h e  absorpt ion c o e f f i c i e n t  and 

imaginary p a r t  of t h e  d i e l e c t r i c  constant  of AgCl , i n  t h e  energy 

range of our photoemission measurements of t h i s  so l id ,  a r e  presented 

f o r  easy  re ference  i n  Fig. D.3. These a r e  t h e  computer p l o t s  of t h e  

c a l c u l a t e d  o p t i c a l  cons tan ts  us ing  the  r e f l ec t ance  d a t a  of White” which 

we smoothed t o  c o r r e c t  f o r  anomalous s t r u c t u r e  introduced by t h e  o r i g i n a l  

da t a .  The d e t a i l s  of t h e  c a l c u l a t i o n  were descr ibed i n  Appendix A. 
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FIGURE D . 1 .  Coqparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (per ingident  photon) for e lec t rons  photoemitted from 
a t  80 and 295 K for photon energ ies  of 7.8 through 8,6 eV. 

AgBr 
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FIGURE D . 2 .  Comparison of energy d i s t r i b u t i o n s  normalized t o  quantum 
y i e l d  (pe r  inc ident  photon) f o r  e l ec t rons  photoemitted from 
a t  80 and 295'K f o r  photon energ ies  of 3 * 2  through 9.0 eV. 

A g C l  
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FIGURE D .3 (a) . The s p e c t r a l  d i s t r i b u t i o n s  of t h e  absorpt ion 
c o e f f i c i e n t  of A g C l  a t  295'K. 
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